Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On rational points on classifying stacks and Malle's conjecture (2402.10355v2)

Published 15 Feb 2024 in math.NT and math.AG

Abstract: In this expository article, we compare Malle's conjecture on counting number fields of bounded discriminant with recent conjectures of Ellenberg--Satriano--Zureick-Brown and Darda--Yasuda on counting points of bounded height on classifying stacks. We illustrate the comparisons via the classifying stacks $B(\mathbb{Z}/n\mathbb{Z})$ and $B{\mu_n}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Brandon Alberts. The weak form of Malle’s conjecture and solvable groups. Res. Number Theory, 6(1):Paper No. 10, 23, 2020.
  2. Brandon Alberts. Statistics of the first Galois cohomology group: A refinement of Malle’s conjecture. Algebra and Number Theory, 15(10):2513–2569, 2021.
  3. Jarod Alper. Stacks and moduli. https://sites.math.washington.edu/~jarod/moduli.pdf. Notes by Jarod Alper - working draft.
  4. Harmonic analysis and statistics of the first Galois cohomology group. Res. Math. Sci., 8(3):Paper No. 50, 16, 2021.
  5. Suren Ju. Arakelov. An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR Ser. Mat., 38:1179–1192, 1974.
  6. Manjul Bhargava. The density of discriminants of quartic rings and fields. Ann. of Math. (2), 162(2):1031–1063, 2005.
  7. Manjul Bhargava. Mass Formulae for Extensions of Local Fields, and Conjectures on the Density of Number Field Discriminants. International Mathematics Research Notices, 2007:rnm052, 01 2007.
  8. Manjul Bhargava. The density of discriminants of quintic rings and fields. Ann. of Math. (2), 172(3):1559–1591, 2010.
  9. Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann., 286(1-3):27–43, 1990.
  10. Geometry of numbers methods over global fields i: Prehomogeneous vector spaces, 2015.
  11. Enumerating quartic dihedral extensions of ℚℚ\mathbb{Q}blackboard_Q. Compositio Math., 133(1):65–93, 2002.
  12. Ratko Darda. Rational points of bounded height on weighted projective stacks. https://theses.hal.science/tel-03682761/document, 2021.
  13. On the density of discriminants of cubic fields. II. Proc. Roy. Soc. London Ser. A, 322(1551):405–420, 1971.
  14. Computations with relative extensions of number fields with an application to the construction of Hilbert class fields of prime degree. In Henri Cohen, editor, Proceedings of the 2nd International Symposium (ANTS-II) held at the Université Bordeaux I, Talence, May 18–23, 1996, volume 1122 of Lecture Notes in Computer Science, pages 68–76. Springer-Verlag, Berlin, 1996.
  15. Torsors for finite group schemes of bounded height. J. Lond. Math. Soc., to appear, arXiv:2207.03642, 2022.
  16. The Batyrev-Manin conjecture for DM stacks. arXiv:2207.03645, 2022.
  17. Quantitative inverse Galois problem for semicommutative finite group schemes. arXiv:2210.01495, 2022.
  18. Heights on stacks and a generalized Batyrev-Manin-Malle conjecture. Forum Math. Sigma, 11:Paper No. e14, 54, 2023.
  19. Counting extensions of function fields with bounded discriminant and specified Galois group, pages 151–168. Birkhäuser Boston, Boston, MA, 2005.
  20. Barbara Fantechi. Stacks for everybody. In European Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pages 349–359. Birkhäuser, Basel, 2001.
  21. Rational points of bounded height on Fano varieties. Invent. Math., 95(2):421–435, 1989.
  22. Height Functions, pages 168–256. Springer New York, New York, NY, 2000.
  23. Jürgen Klüners. The asymptotics of nilpotent Galois groups. Acta Arith., 204(2):165–184, 2022.
  24. Jürgen Klüners. A counter example to malle’s conjecture on the asymptotics of discriminants. Comptes Rendus Mathematique, 340(6):411–414, 2005.
  25. Counting nilpotent Galois extensions. J. Reine Angew. Math., 572:1–26, 2004.
  26. On Malle’s conjecture for nilpotent groups. Trans. Amer. Math. Soc. Ser. B, 10:310–354, 2023.
  27. Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.
  28. Sirpa Mäki. On the density of abelian number fields. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, (54):104, 1985.
  29. Gunter Malle. On the distribution of Galois groups. J. Number Theory, 92(2):315–329, 2002.
  30. Gunter Malle. On the distribution of Galois groups. II. Experiment. Math., 13(2):129–135, 2004.
  31. James S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.
  32. Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
  33. Cohomology of number fields, volume 323 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
  34. Martin Olsson. Algebraic spaces and stacks, volume 62 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2016.
  35. Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2002. Translated from the French by Patrick Ion and revised by the author.
  36. Alexei Skorobogatov. Torsors and rational points, volume 144 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001.
  37. The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2023.
  38. Nikolai Tschebotareff. Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann., 95(1):191–228, 1926.
  39. Seyfi Türkelli. Connected components of hurwitz schemes and malle’s conjecture. Journal of Number Theory, 155:163–201, 2015.
  40. Kȩstutis Česnavičius. A modular description of 𝒳0⁢(n)subscript𝒳0𝑛\mathcal{X}_{0}(n)caligraphic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_n ). Algebra Number Theory, 11(9):2001–2089, 2017.
  41. Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory. In Fundamental algebraic geometry, volume 123 of Math. Surveys Monogr., pages 1–104. Amer. Math. Soc., Providence, RI, 2005.
  42. John Voight. Introduction to algebraic stacks. https://math.dartmouth.edu/~jvoight/notes/moduli-red-harvard.pdf, 2004.
  43. Jiuya Wang. Malle’s conjecture for Sn×Asubscript𝑆𝑛𝐴{S}_{n}\times{A}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT × italic_A for n=3,4,5𝑛345n=3,4,5italic_n = 3 , 4 , 5. Compositio Mathematica, 157(1):83–121, 2021.
  44. Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.
  45. Melanie Matchett Wood. On the probabilities of local behaviors in abelian field extensions. Compos. Math., 146(1):102–128, 2010.
  46. David J. Wright. Distribution of discriminants of abelian extensions. Proc. London Math. Soc. (3), 58(1):17–50, 1989.
  47. Mass formulas for local Galois representations and quotient singularities. I: a comparison of counting functions. Int. Math. Res. Not. IMRN, (23):12590–12619, 2015.
  48. Takehiko Yasuda. Motivic integration over deligne–mumford stacks. Advances in Mathematics, 207(2):707–761, 2006.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: