Ultrafast Photochemistry and Electron Diffraction for Cyclobutanone in the S2 State: Surface Hopping with Time-Dependent Density Functional Theory (2402.10336v1)
Abstract: We simulate the photodynamics of gas-phase cyclobutanone excited to the S$_2$ state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total C3+C2 photoproduct yield of 9%, with a C3:C2 product ratio of 1:8. Two primary S$_2$$\rightarrow$S$_1$ conical intersections are identified: $\beta$ stretch and CCH bend, with the higher energy $\beta$ stretch being associated with sub-picosecond S$_2$ decay. Excited state lifetimes computed with respect to electronic state populations were found to be 7.0 ps (S$_2$$\rightarrow$S$_1$) and 550 fs (S$_1$$\rightarrow$S$_0$). We also generate time-resolved difference pair distribution functions ($\Delta$PDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons to ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved $\Delta$PDFs produced a distinct set of lifetimes: i) a 0.462 ps decay, and ii) a 16.8 ps decay that both resemble the S$_2$ minimum, as well as iii) a long ($>$ nanosecond) decay that resembles the S$_1$ minimum geometry and the fully separated C3/C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.
- A. Mezzetti and W. Leibl, Photosynth. Res. 131, 121 (2017).
- B. F. E. Curchod and T. J. Martínez, Chem. Rev. 118, 3305 (2018).
- K. Y. Tang and E. K. C. Lee, J. Phys. Chem. 80, 1833 (1976).
- L. Liu and W.-H. Fang, J. Chem. Phys. 144 (2016).
- J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
- E. Runge and E. K. U. Gross, Physical Review Letters 52, 997 (1984).
- M. Casanova-Páez and L. Goerigk, J. Chem. Phys. 153, 064106 (2020).
- D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
- S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
- C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
- R. Send and F. Furche, J. Chem. Phys. 132, 044107 (2010).
- B. Efron, The Annals of Statistics 7, 1 (1979).
- T. J. A. Wolf, “Diffraction simulation,” https://github.com/ThomasJAWolf/Diffraction_simulation (2020).
- C. Wittig, J. Phys. Chem. B 109, 8428 (2005).
- T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).
- R. F. Whitlock and A. B. F. Duncan, J. Chem. Phys. 55, 218 (1971).
- J. C. Hemminger and E. K. C. Lee, J. Chem. Phys. 56, 5284 (1972).
- A. Udvarhazi and M. A. El‐Sayed, J. Chem. Phys. 42, 3335 (1965).
- D. A. Knecht, Chem. Phys. Lett. 33, 325 (1975).
- S. M. Parker and C. J. Schiltz, J. Chem. Phys. 153, 174109 (2020).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.