Papers
Topics
Authors
Recent
2000 character limit reached

Ultrafast Photochemistry and Electron Diffraction for Cyclobutanone in the S2 State: Surface Hopping with Time-Dependent Density Functional Theory (2402.10336v1)

Published 15 Feb 2024 in physics.chem-ph

Abstract: We simulate the photodynamics of gas-phase cyclobutanone excited to the S$_2$ state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total C3+C2 photoproduct yield of 9%, with a C3:C2 product ratio of 1:8. Two primary S$_2$$\rightarrow$S$_1$ conical intersections are identified: $\beta$ stretch and CCH bend, with the higher energy $\beta$ stretch being associated with sub-picosecond S$_2$ decay. Excited state lifetimes computed with respect to electronic state populations were found to be 7.0 ps (S$_2$$\rightarrow$S$_1$) and 550 fs (S$_1$$\rightarrow$S$_0$). We also generate time-resolved difference pair distribution functions ($\Delta$PDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons to ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved $\Delta$PDFs produced a distinct set of lifetimes: i) a 0.462 ps decay, and ii) a 16.8 ps decay that both resemble the S$_2$ minimum, as well as iii) a long ($>$ nanosecond) decay that resembles the S$_1$ minimum geometry and the fully separated C3/C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. Mezzetti and W. Leibl, Photosynth. Res. 131, 121 (2017).
  2. B. F. E. Curchod and T. J. Martínez, Chem. Rev. 118, 3305 (2018).
  3. K. Y. Tang and E. K. C. Lee, J. Phys. Chem. 80, 1833 (1976).
  4. L. Liu and W.-H. Fang, J. Chem. Phys. 144 (2016).
  5. J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
  6. E. Runge and E. K. U. Gross, Physical Review Letters 52, 997 (1984).
  7. M. Casanova-Páez and L. Goerigk, J. Chem. Phys. 153, 064106 (2020).
  8. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
  9. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
  10. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
  11. R. Send and F. Furche, J. Chem. Phys. 132, 044107 (2010).
  12. B. Efron, The Annals of Statistics 7, 1 (1979).
  13. T. J. A. Wolf, “Diffraction simulation,” https://github.com/ThomasJAWolf/Diffraction_simulation (2020).
  14. C. Wittig, J. Phys. Chem. B 109, 8428 (2005).
  15. T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).
  16. R. F. Whitlock and A. B. F. Duncan, J. Chem. Phys. 55, 218 (1971).
  17. J. C. Hemminger and E. K. C. Lee, J. Chem. Phys. 56, 5284 (1972).
  18. A. Udvarhazi and M. A. El‐Sayed, J. Chem. Phys. 42, 3335 (1965).
  19. D. A. Knecht, Chem. Phys. Lett. 33, 325 (1975).
  20. S. M. Parker and C. J. Schiltz, J. Chem. Phys. 153, 174109 (2020).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.