Quantum optics with giant atoms in a structured photonic bath
Abstract: We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled {\it non-locally} to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green's functions, atom-photon bound states (BSs), collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice and photonic graphene.
- A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineering and harnessing giant atoms in high-dimensional baths: a proposal for implementation with cold atoms, Phys. Rev. lett. 122, 203603 (2019).
- C. Joshi, F. Yang, and M. Mirhosseini, Resonance fluorescence of a chiral artificial atom, Phys. Rev. X 13, 021039 (2023).
- A. F. Kockum, G. Johansson, and F. Nori, Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics, Phys. Rev. Lett. 120, 140404 (2018).
- A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Res. 2, 043184 (2020).
- A. Soro and A. F. Kockum, Chiral quantum optics with giant atoms, Phys. Rev. A 105, 023712 (2022).
- K. H. Lim, W.-K. Mok, and L.-C. Kwek, Oscillating bound states in non-markovian photonic lattices, Phys. Rev. A 107, 023716 (2023).
- Q.-Y. Qiu, Y. Wu, and X.-Y. Lü, Collective radiance of giant atoms in non-markovian regime, Sci. China-Phys. Mech. Astron. 66, 224212 (2023).
- D. D. Noachtar, J. Knörzer, and R. H. Jonsson, Nonperturbative treatment of giant atoms using chain transformations, Physical Review A 106, 013702 (2022).
- W. Zhao and Z. Wang, Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points, Phys. Rev. A 101, 053855 (2020).
- H. Yu, Z. Wang, and J.-H. Wu, Entanglement preparation and nonreciprocal excitation evolution in giant atoms by controllable dissipation and coupling, Phys. Rev. A 104, 013720 (2021).
- W. Cheng, Z. Wang, and Y.-X. Liu, Topology and retardation effect of a giant atom in a topological waveguide, Phys. Rev. A 106, 033522 (2022).
- A. Soro, C. S. Muñoz, and A. F. Kockum, Interaction between giant atoms in a one-dimensional structured environment, Phys. Rev. A 107, 013710 (2023).
- J. Wang, F. Li, and X. Yi, Giant atom induced zero modes and localization in the nonreciprocal su–schrieffer–heeger chain, J. Phys. A Math. Theor. 56, 455306 (2023).
- C. Vega, D. Porras, and A. González-Tudela, Topological multimode waveguide QED, Phys. Rev. Res. 5, 023031 (2023).
- A. G. Kofman, G. Kurizki, and B. Sherman, Spontaneous and induced atomic decay in photonic band structures, J. Mod. Opt. 41, 353 (1994).
- Y. Liu and A. A. Houck, Quantum electrodynamics near a photonic bandgap, Nat. Phys. 13, 48 (2017).
- A. González-Tudela and J. I. Cirac, Exotic quantum dynamics and purely long-range coherent interactions in dirac conelike baths, Phys. Rev. A 97, 043831 (2018).
- L. Leonforte, A. Carollo, and F. Ciccarello, Vacancy-like Dressed States in Topological Waveguide QED, Phys. Rev. Lett. 126, 063601 (2021a).
- Indeed, to derive (8) [55] the only essential requirement is that the interaction Hamitonian has the form ∝(|χ⟩⟨e|+H.c.)\propto\!(\mathinner{|{\chi}\rangle}\!\langle e|{+}{\rm H.c.})∝ ( start_ATOM | italic_χ ⟩ end_ATOM ⟨ italic_e | + roman_H . roman_c . ) regardless of the nature of |χ⟩ket𝜒\mathinner{|{\chi}\rangle}| italic_χ ⟩.
- There is a slight difference in the definition of |Ψ(z)⟩ketΨ𝑧\mathinner{|{\Psi(z)}\rangle}| roman_Ψ ( italic_z ) ⟩ and F(z)𝐹𝑧F(z)italic_F ( italic_z ) used here and the one in Ref. [55].
- A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. Kimble, and D. E. Chang, Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays, Phys. Rev. X 7, 031024 (2017).
- M. Bello and J. I. Cirac, Topological effects in two-dimensional quantum emitter systems, Phys. Rev. B 107, 054301 (2023).
- P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information (Springer-Verlag Berlin, Heidelberg, 2007) pp. 1–325.
- In the general case (beyond weak coupling), Eq. (58) features an additional factor 1/𝒩1𝒩1/{\cal N}1 / caligraphic_N on the right-hand side [cf. Eqs. (17) and (19)].
- S. Longhi, Bound states in the continuum in a single-level Fano-Anderson model, Eur. Phys. J. B 57, 45 (2007).
- D. Witthaut and A. S. Sorensen, Photon scattering by a three-level emitter in a one-dimensional waveguide, New J. Phys. 12, 43052 (2010).
- Y. L. L. Fang, F. Ciccarello, and H. U. Baranger, Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide, New J. Phys. 20, 43035 (2018), 1707.05946 .
- T. Tufarelli, F. Ciccarello, and M. S. Kim, Dynamics of spontaneous emission in a single-end photonic waveguide, Phys. Rev. A 87, 13820 (2013).
- T. Tufarelli, M. S. Kim, and F. Ciccarello, Non-Markovianity of a quantum emitter in front of a mirror, Phys. Rev. A 90, 12113 (2014).
- We consider a square for simplicity, but the present discussion can be naturally generalized to a rectangle.
- A. González-Tudela and J. I. Cirac, Markovian and non-Markovian dynamics of quantum emitters coupled to two-dimensional structured reservoirs, Phys. Rev. A 96, 043811 (2017).
- The occurence of such a DFH was briefly mentioned in Ref. [8].
- E. Ingelsten, A. F. Kockum, and A. Soro, Avoiding decoherence with giant atoms in a two-dimensional structured environment, arXiv:2402.xxxxx .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.