Quantum Simulation of SU(3) Lattice Yang Mills Theory at Leading Order in Large N (2402.10265v4)
Abstract: Quantum simulations of the dynamics of QCD have been limited by the complexities of mapping the continuous gauge fields onto quantum computers. By parametrizing the gauge invariant Hilbert space in terms of plaquette degrees of freedom, we show how the Hilbert space and interactions can be expanded in inverse powers of N_c. At leading order in this expansion, the Hamiltonian simplifies dramatically, both in the required size of the Hilbert space as well as the type of interactions involved. Adding a truncation of the resulting Hilbert space in terms of local energy states we give explicit constructions that allow simple representations of SU(3) gauge fields on qubits and qutrits. This formulation allows a simulation of the real time dynamics of a SU(3) lattice gauge theory on a 5x5 and 8x8 lattice on ibm_torino with a CNOT depth of 113.
- K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).
- F. Karsch, K. Redlich, and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, The European Physical Journal C 29, 549 (2003).
- A. Browaeys and T. Lahaye, Many-body physics with individually controlled rydberg atoms, Nature Physics 16, 132 (2020).
- R. P. Feynman, Simulating physics with computers, 1981, International Journal of Theoretical Physics 21 (1981).
- T. S. Humble, G. N. Perdue, and M. J. Savage, Snowmass computational frontier: Topical group report on quantum computing (2022b), arXiv:2209.06786 [quant-ph] .
- H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collaboration), General methods for digital quantum simulation of gauge theories, Phys. Rev. D 100, 034518 (2019).
- Y. Ji, H. Lamm, and S. Zhu (NuQS Collaboration), Gluon field digitization via group space decimation for quantum computers, Phys. Rev. D 102, 114513 (2020).
- T. V. Zache, D. González-Cuadra, and P. Zoller, Fermion-qudit quantum processors for simulating lattice gauge theories with matter, Quantum 7, 1140 (2023a).
- T. Byrnes and Y. Yamamoto, Simulating lattice gauge theories on a quantum computer, Phys. Rev. A 73, 022328 (2006).
- E. Zohar, J. I. Cirac, and B. Reznik, Simulating compact quantum electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects, Phys. Rev. Lett. 109, 125302 (2012).
- E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of gauge theories with ultracold atoms: Local gauge invariance from angular-momentum conservation, Phys. Rev. A 88, 023617 (2013a).
- E. Zohar, J. I. Cirac, and B. Reznik, Cold-atom quantum simulator for su(2) yang-mills lattice gauge theory, Phys. Rev. Lett. 110, 125304 (2013b).
- E. Zohar and M. Burrello, Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D 91, 054506 (2015).
- E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices, Reports on Progress in Physics 79, 014401 (2015).
- I. Raychowdhury and J. R. Stryker, Solving gauss’s law on digital quantum computers with loop-string-hadron digitization, Phys. Rev. Res. 2, 033039 (2020a).
- S. V. Kadam, I. Raychowdhury, and J. R. Stryker, Loop-string-hadron formulation of an su(3) gauge theory with dynamical quarks, Phys. Rev. D 107, 094513 (2023).
- A. Ciavarella, N. Klco, and M. J. Savage, Some conceptual aspects of operator design for quantum simulations of non-abelian lattice gauge theories (2022), arXiv:2203.11988 [quant-ph] .
- A. N. Ciavarella and I. A. Chernyshev, Preparation of the su(3) lattice yang-mills vacuum with variational quantum methods, Phys. Rev. D 105, 074504 (2022).
- N. Klco, M. J. Savage, and J. R. Stryker, Su(2) non-abelian gauge field theory in one dimension on digital quantum computers, Phys. Rev. D 101, 074512 (2020).
- A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for quantum simulation of su(3) yang-mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103, 094501 (2021).
- A. H. Z. Kavaki and R. Lewis, From square plaquettes to triamond lattices for su(2) gauge theory (2024), arXiv:2401.14570 [hep-lat] .
- Y. Meurice, Theoretical methods to design and test quantum simulators for the compact abelian higgs model, Phys. Rev. D 104, 094513 (2021).
- Z. Davoudi, I. Raychowdhury, and A. Shaw, Search for efficient formulations for hamiltonian simulation of non-abelian lattice gauge theories, Phys. Rev. D 104, 074505 (2021).
- D. Berenstein and H. Kawai, Integrable spin chains from large-n𝑛nitalic_n qcd at strong coupling (2023), arXiv:2308.11716 [hep-th] .
- C. F. Kane, N. Gomes, and M. Kreshchuk, Nearly-optimal state preparation for quantum simulations of lattice gauge theories (2024), arXiv:2310.13757 [quant-ph] .
- G.-X. Su, J. Osborne, and J. C. Halimeh, A cold-atom particle collider (2024), arXiv:2401.05489 [cond-mat.quant-gas] .
- C. W. Bauer and D. M. Grabowska, Efficient representation for simulating u(1) gauge theories on digital quantum computers at all values of the coupling, Phys. Rev. D 107, L031503 (2023).
- M. Illa and M. J. Savage, Basic Elements for Simulations of Standard Model Physics with Quantum Annealers: Multigrid and Clock States, Phys. Rev. A 106, 052605 (2022), arXiv:2202.12340 [quant-ph] .
- A. N. Ciavarella, Quantum simulation of lattice qcd with improved hamiltonians, Phys. Rev. D 108, 094513 (2023).
- B. Lucini and M. Panero, Su(n) gauge theories at large n, Physics Reports 526, 93 (2013), sU(N) gauge theories at large N.
- A. V. Manohar, Large N QCD, in Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions (1998) pp. 1091–1169, arXiv:hep-ph/9802419 .
- T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05, 026, arXiv:hep-ph/0603175 .
- M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58, 639 (2008), arXiv:0803.0883 [hep-ph] .
- G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72, 461 (1974).
- A. PICH, Colourless mesons in a polychromatic world, in Phenomenology of Large Nc QCD (WORLD SCIENTIFIC, 2002).
- D. B. Kaplan and M. J. Savage, The spin-flavor dependence of nuclear forces from large-n qcd, Physics Letters B 365, 244 (1996).
- J. Maldacena, The large-n limit of superconformal field theories and supergravity, International journal of theoretical physics 38, 1113 (1999).
- L. G. Yaffe, Large n𝑛nitalic_n limits as classical mechanics, Rev. Mod. Phys. 54, 407 (1982).
- J. Kogut and L. Susskind, Hamiltonian formulation of wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).
- J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979).
- T. V. Zache, D. González-Cuadra, and P. Zoller, Quantum and classical spin-network algorithms for q𝑞qitalic_q-deformed kogut-susskind gauge theories, Phys. Rev. Lett. 131, 171902 (2023b).
- T. Hayata and Y. Hidaka, q𝑞qitalic_q deformed formulation of hamiltonian su(3) yang-mills theory (2023), arXiv:2306.12324 [hep-lat] .
- Z. Davoudi, A. F. Shaw, and J. R. Stryker, General quantum algorithms for hamiltonian simulation with applications to a non-abelian lattice gauge theory, Quantum 7, 1213 (2023).
- D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, Journal of Mathematical Physics 19, 999 (2008), https://pubs.aip.org/aip/jmp/article-pdf/19/5/999/11195862/999_1_online.pdf .
- M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).
- F. Bruckmann, K. Jansen, and S. Kühn, O(3) nonlinear sigma model in 1+1111+11 + 1 dimensions with matrix product states, Phys. Rev. D 99, 074501 (2019).
- J. Y. Araz, S. Schenk, and M. Spannowsky, Toward a quantum simulation of nonlinear sigma models with a topological term, Phys. Rev. A 107, 032619 (2023).
- B. Müller and X. Yao, Simple hamiltonian for quantum simulation of strongly coupled (2+1)D21D(2+1)\mathrm{D}( 2 + 1 ) roman_D su(2) lattice gauge theory on a honeycomb lattice, Phys. Rev. D 108, 094505 (2023).
- X. Yao, Su(2) gauge theory in 2+1212+12 + 1 dimensions on a plaquette chain obeys the eigenstate thermalization hypothesis, Phys. Rev. D 108, L031504 (2023).
- F. Turro, A. Ciavarella, and X. Yao, Classical and quantum computing of shear viscosity for 2+1d21𝑑2+1d2 + 1 italic_d su(2) gauge theory (2024), arXiv:2402.04221 [hep-lat] .
- R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), https://doi.org/10.1146/annurev-conmatphys-031214-014726 .
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- A. J. A. James, R. M. Konik, and N. J. Robinson, Nonthermal states arising from confinement in one and two dimensions, Phys. Rev. Lett. 122, 130603 (2019).
- N. J. Robinson, A. J. A. James, and R. M. Konik, Signatures of rare states and thermalization in a theory with confinement, Phys. Rev. B 99, 195108 (2019).
- The icons in the corners of plots indicate if classical or quantum compute resources were used to perform the calculation [153] and are available at https://iqus.uw.edu/resources/icons/.
- H. Lamm and S. Lawrence, Simulation of nonequilibrium dynamics on a quantum computer, Phys. Rev. Lett. 121, 170501 (2018).
- S. Harmalkar, H. Lamm, and S. Lawrence, Quantum simulation of field theories without state preparation (2020), arXiv:2001.11490 [hep-lat] .
- E. J. Gustafson and H. Lamm, Toward quantum simulations of 𝕫2subscript𝕫2{\mathbb{z}}_{2}blackboard_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory without state preparation, Phys. Rev. D 103, 054507 (2021).
- R. Sommer, Scale setting in lattice qcd (2014), arXiv:1401.3270 [hep-lat] .
- IBM Quantum Experience, ibm_torino v1.0.2, https://quantum-computing.ibm.com (2023).
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
- M. Asaduzzaman, R. G. Jha, and B. Sambasivam, A model of quantum gravity on a noisy quantum computer (2024), arXiv:2311.17991 [quant-ph] .
- L. Hidalgo and P. Draper, Quantum simulations for strong-field qed (2023), arXiv:2311.18209 [hep-ph] .
- O. Kiss, M. Grossi, and A. Roggero, Quantum error mitigation for fourier moment computation (2024), arXiv:2401.13048 [quant-ph] .
- E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
- T. Hayata and Y. Hidaka, Thermalization of yang-mills theory in a (3+1313+13 + 1)-dimensional small lattice system, Phys. Rev. D 103, 094502 (2021).
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004).
- NVIDIA cuQuantum team, NVIDIA/cuQuantum: cuQuantum v23.10 (2023).
- N. Klco and M. J. Savage, Minimally entangled state preparation of localized wave functions on quantum computers, Phys. Rev. A 102, 012612 (2020).
- Note that this presentation only works as presented in the simplest topological sector of the allowed states. There are other states that allow for additional overall winding numbers, which will not be considered in this work. One can easily generalize the loop representation to also include winding loops.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.