Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Classification Diffusion Models: Revitalizing Density Ratio Estimation (2402.10095v3)

Published 15 Feb 2024 in cs.LG

Abstract: A prominent family of methods for learning data distributions relies on density ratio estimation (DRE), where a model is trained to $\textit{classify}$ between data samples and samples from some reference distribution. DRE-based models can directly output the likelihood for any given input, a highly desired property that is lacking in most generative techniques. Nevertheless, to date, DRE methods have failed in accurately capturing the distributions of complex high-dimensional data, like images, and have thus been drawing reduced research attention in recent years. In this work we present $\textit{classification diffusion models}$ (CDMs), a DRE-based generative method that adopts the formalism of denoising diffusion models (DDMs) while making use of a classifier that predicts the level of noise added to a clean signal. Our method is based on an analytical connection that we derive between the MSE-optimal denoiser for removing white Gaussian noise and the cross-entropy-optimal classifier for predicting the noise level. Our method is the first DRE-based technique that can successfully generate images beyond the MNIST dataset. Furthermore, it can output the likelihood of any input in a single forward pass, achieving state-of-the-art negative log likelihood (NLL) among methods with this property. Code is available on the project's webpage in https://shaharYadin.github.io/CDM/ .

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.