Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Resurgence in Lorentzian quantum cosmology: No-boundary saddles and resummation of quantum gravity corrections around tunneling saddle points (2402.09981v3)

Published 15 Feb 2024 in gr-qc, hep-th, math-ph, and math.MP

Abstract: We revisit the path-integral approach to the wave function of the Universe by utilizing Lefschetz thimble analyses and resurgence theory. The traditional Euclidean path-integral of gravity has the notorious ambiguity of the direction of Wick rotation. In contrast, the Lorentzian method can be formulated concretely with the Picard-Lefschetz theory. Yet, a challenge remains: the physical parameter space lies on a Stokes line, meaning that the Lefschetz-thimble structure is still unclear. Through complex deformations, we resolve this issue by uniquely identifying the thimble structure. This leads to the tunneling wave function, as opposed to the no-boundary wave function, offering a more rigorous proof of the previous results. Further exploring the parameter space, we discover rich structures: the ambiguity of the Borel resummation of perturbative series around the tunneling saddle points is exactly canceled by the ambiguity of the contributions from no-boundary saddle points. This indicates that resurgence also works in quantum cosmology, particularly in the minisuperspace model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (152)
  1. S. W. Hawking, “Quantum Gravity and Path Integrals,” Phys. Rev. D 18 (1978) 1747–1753.
  2. J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28 (1983) 2960–2975.
  3. A. Vilenkin, “Creation of Universes from Nothing,” Phys. Lett. B 117 (1982) 25–28.
  4. G. W. Gibbons, S. W. Hawking, and M. J. Perry, “Path Integrals and the Indefiniteness of the Gravitational Action,” Nucl. Phys. B 138 (1978) 141–150.
  5. A. D. Linde, “Quantum Creation of the Inflationary Universe,” Lett. Nuovo Cim. 39 (1984) 401–405.
  6. J. J. Halliwell and J. Louko, “Steepest Descent Contours in the Path Integral Approach to Quantum Cosmology. 1. The De Sitter Minisuperspace Model,” Phys. Rev. D 39 (1989) 2206.
  7. A. Vilenkin, “Quantum Creation of Universes,” Phys. Rev. D 30 (1984) 509–511.
  8. A. D. Linde, “Quantum creation of an inflationary universe,” Sov. Phys. JETP 60 (1984) 211–213.
  9. A. D. Linde, “The Inflationary Universe,” Rept. Prog. Phys. 47 (1984) 925–986.
  10. V. A. Rubakov, “Quantum Mechanics in the Tunneling Universe,” Phys. Lett. B 148 (1984) 280–286.
  11. Y. B. Zeldovich and A. A. Starobinsky, “Quantum creation of a universe in a nontrivial topology,” Sov. Astron. Lett. 10 (1984) 135.
  12. A. Vilenkin, “Boundary Conditions in Quantum Cosmology,” Phys. Rev. D 33 (1986) 3560.
  13. A. Vilenkin, “Quantum Cosmology and the Initial State of the Universe,” Phys. Rev. D 37 (1988) 888.
  14. J. Feldbrugge, J.-L. Lehners, and N. Turok, “Lorentzian Quantum Cosmology,” Phys. Rev. D 95 no. 10, (2017) 103508, arXiv:1703.02076 [hep-th].
  15. F. PHAM, “Vanishing homologies and the n variables saddlepoint method,” Proc. Symp. Pure Math. 40 (1983) 310–333.
  16. M. V. Berry and C. J. Howls, “Hyperasymptotics for integrals with saddles,” Proceedings: Mathematical and Physical Sciences 434 no. 1892, (1991) 657–675.
  17. C. J. Howls, “Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453 no. 1966, (1997) 2271–2294.
  18. E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].
  19. Z.-G. Mou, P. M. Saffin, A. Tranberg, and S. Woodward, “Real-time quantum dynamics, path integrals and the method of thimbles,” JHEP 06 (2019) 094, arXiv:1902.09147 [hep-lat].
  20. Z.-G. Mou, P. M. Saffin, and A. Tranberg, “Quantum tunnelling, real-time dynamics and Picard-Lefschetz thimbles,” JHEP 11 (2019) 135, arXiv:1909.02488 [hep-th].
  21. P. Millington, Z.-G. Mou, P. M. Saffin, and A. Tranberg, “Statistics on Lefschetz thimbles: Bell/Leggett-Garg inequalities and the classical-statistical approximation,” JHEP 03 (2021) 077, arXiv:2011.02657 [hep-th].
  22. H. Matsui, “Lorentzian path integral for quantum tunneling and WKB approximation for wave-function,” Eur. Phys. J. C 82 no. 5, (2022) 426, arXiv:2102.09767 [gr-qc].
  23. K. Rajeev, “Lorentzian worldline path integral approach to Schwinger effect,” Phys. Rev. D 104 no. 10, (2021) 105014, arXiv:2105.12194 [hep-th].
  24. T. Hayashi, K. Kamada, N. Oshita, and J. Yokoyama, “Vacuum decay in the Lorentzian path integral,” JCAP 05 no. 05, (2022) 041, arXiv:2112.09284 [hep-th].
  25. J. Feldbrugge and N. Turok, “Existence of real time quantum path integrals,” Annals Phys. 454 (2023) 169315, arXiv:2207.12798 [hep-th].
  26. J. Nishimura, K. Sakai, and A. Yosprakob, “A new picture of quantum tunneling in the real-time path integral from Lefschetz thimble calculations,” JHEP 09 (2023) 110, arXiv:2307.11199 [hep-th].
  27. J. Feldbrugge, D. L. Jow, and U.-L. Pen, “Complex classical paths in quantum reflections and tunneling,” arXiv:2309.12420 [quant-ph].
  28. J. Feldbrugge, D. L. Jow, and U.-L. Pen, “Crossing singularities in the saddle point approximation,” arXiv:2309.12427 [quant-ph].
  29. R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity,” Gen. Rel. Grav. 40 (2008) 1997–2027, arXiv:gr-qc/0405109.
  30. G. Fanaras and A. Vilenkin, “Jackiw-Teitelboim and Kantowski-Sachs quantum cosmology,” JCAP 03 no. 03, (2022) 056, arXiv:2112.00919 [gr-qc].
  31. G. Narain, “On Gauss-bonnet gravity and boundary conditions in Lorentzian path-integral quantization,” JHEP 05 (2021) 273, arXiv:2101.04644 [gr-qc].
  32. G. Narain, “Surprises in Lorentzian path-integral of Gauss-Bonnet gravity,” JHEP 04 (2022) 153, arXiv:2203.05475 [gr-qc].
  33. M. Ailiga, S. Mallik, and G. Narain, “Lorentzian Robin Universe,” JHEP 01 (2024) 124, arXiv:2308.01310 [gr-qc].
  34. J.-L. Lehners, “Review of the no-boundary wave function,” Phys. Rept. 1022 (2023) 1–82, arXiv:2303.08802 [hep-th].
  35. H. Matsui and S. Mukohyama, “Hartle-Hawking no-boundary proposal and Hořava-Lifshitz gravity,” Phys. Rev. D 109 no. 2, (2024) 023504, arXiv:2310.00210 [gr-qc].
  36. J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, and O. Janssen, “Real no-boundary wave function in Lorentzian quantum cosmology,” Phys. Rev. D 96 no. 4, (2017) 043505, arXiv:1705.05340 [gr-qc].
  37. J. Feldbrugge, J.-L. Lehners, and N. Turok, “No rescue for the no boundary proposal: Pointers to the future of quantum cosmology,” Phys. Rev. D 97 no. 2, (2018) 023509, arXiv:1708.05104 [hep-th].
  38. J. Ecalle, “Un analogue des fonctions automorphes : les fonctions résurgentes,” Séminaire Choquet. Initiation à l’analyse 17 no. 1, (1977-1978) . talk:11.
  39. Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Hoboken, NJ, 2008.
  40. M. Marino, “Lectures on non-perturbative effects in large N gauge theories, matrix models and strings,” arXiv:1206.6272 [hep-th].
  41. D. Dorigoni, “An Introduction to Resurgence, Trans-Series and Alien Calculus,” Annals Phys. 409 (2019) 167914, arXiv:1411.3585 [hep-th].
  42. I. Aniceto, G. Başar, and R. Schiappa, “A primer on resurgent transseries and their asymptotics,” Physics Reports 809 (2019) 1–135.
  43. D. Sauzin, “Introduction to 1-summability and resurgence,” arXiv:1405.0356 [math.DS].
  44. M. Marino, R. Schiappa, and M. Weiss, “Multi-Instantons and Multi-Cuts,” J. Math. Phys. 50 (2009) 052301, arXiv:0809.2619 [hep-th].
  45. S. Garoufalidis, A. Its, A. Kapaev, and M. Marino, “Asymptotics of the instantons of Painlevé I,” Int. Math. Res. Not. 2012 no. 3, (2012) 561–606, arXiv:1002.3634 [math.CA].
  46. C.-T. Chan, H. Irie, and C.-H. Yeh, “Stokes Phenomena and Non-perturbative Completion in the Multi-cut Two-matrix Models,” Nucl. Phys. B 854 (2012) 67–132, arXiv:1011.5745 [hep-th].
  47. C.-T. Chan, H. Irie, and C.-H. Yeh, “Stokes Phenomena and Quantum Integrability in Non-critical String/M Theory,” Nucl. Phys. B 855 (2012) 46–81, arXiv:1109.2598 [hep-th].
  48. R. Schiappa and R. Vaz, “The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painleve II Equation,” Commun. Math. Phys. 330 (2014) 655–721, arXiv:1302.5138 [hep-th].
  49. M. Marino, “Open string amplitudes and large order behavior in topological string theory,” JHEP 03 (2008) 060, arXiv:hep-th/0612127.
  50. M. Marino, R. Schiappa, and M. Weiss, “Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings,” Commun. Num. Theor. Phys. 2 (2008) 349–419, arXiv:0711.1954 [hep-th].
  51. M. Marino, “Nonperturbative effects and nonperturbative definitions in matrix models and topological strings,” JHEP 12 (2008) 114, arXiv:0805.3033 [hep-th].
  52. S. Pasquetti and R. Schiappa, “Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models,” Annales Henri Poincare 11 (2010) 351–431, arXiv:0907.4082 [hep-th].
  53. I. Aniceto, R. Schiappa, and M. Vonk, “The Resurgence of Instantons in String Theory,” Commun. Num. Theor. Phys. 6 (2012) 339–496, arXiv:1106.5922 [hep-th].
  54. R. Couso-Santamaría, J. D. Edelstein, R. Schiappa, and M. Vonk, “Resurgent Transseries and the Holomorphic Anomaly,” Annales Henri Poincare 17 no. 2, (2016) 331–399, arXiv:1308.1695 [hep-th].
  55. R. Couso-Santamaría, J. D. Edelstein, R. Schiappa, and M. Vonk, “Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local ℂ⁢ℙ2ℂsuperscriptℙ2{\mathbb{C}\mathbb{P}^{2}}blackboard_C blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” Commun. Math. Phys. 338 no. 1, (2015) 285–346, arXiv:1407.4821 [hep-th].
  56. A. Grassi, M. Marino, and S. Zakany, “Resumming the string perturbation series,” JHEP 05 (2015) 038, arXiv:1405.4214 [hep-th].
  57. R. Couso-Santamaría, R. Schiappa, and R. Vaz, “Finite N from Resurgent Large N,” Annals Phys. 356 (2015) 1–28, arXiv:1501.01007 [hep-th].
  58. R. Couso-Santamaría, R. Schiappa, and R. Vaz, “On asymptotics and resurgent structures of enumerative Gromov–Witten invariants,” Commun. Num. Theor. Phys. 11 (2017) 707–790, arXiv:1605.07473 [math.AG].
  59. R. Couso-Santamaría, M. Marino, and R. Schiappa, “Resurgence Matches Quantization,” J. Phys. A 50 no. 14, (2017) 145402, arXiv:1610.06782 [hep-th].
  60. T. Kuroki and F. Sugino, “Resurgence of one-point functions in a matrix model for 2D type IIA superstrings,” JHEP 05 (2019) 138, arXiv:1901.10349 [hep-th].
  61. T. Kuroki, “Two-point functions at arbitrary genus and its resurgence structure in a matrix model for 2D type IIA superstrings,” JHEP 07 (2020) 118, arXiv:2004.13346 [hep-th].
  62. D. Dorigoni, A. Kleinschmidt, and R. Treilis, “To the cusp and back: resurgent analysis for modular graph functions,” JHEP 11 (2022) 048, arXiv:2208.14087 [hep-th].
  63. S. Baldino, R. Schiappa, M. Schwick, and R. Vega, “Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity,” Commun. Num. Theor. Phys. 17 no. 2, (2023) 385–552, arXiv:2203.13726 [hep-th].
  64. R. Schiappa, M. Schwick, and N. Tamarin, “All the D-Branes of Resurgence,” arXiv:2301.05214 [hep-th].
  65. K. Iwaki and M. Marino, “Resurgent Structure of the Topological String and the First Painlevé Equation,” arXiv:2307.02080 [hep-th].
  66. S. Alexandrov, M. Marino, and B. Pioline, “Resurgence of refined topological strings and dual partition functions,” arXiv:2311.17638 [hep-th].
  67. I. Aniceto and M. Spaliński, “Resurgence in Extended Hydrodynamics,” Phys. Rev. D 93 no. 8, (2016) 085008, arXiv:1511.06358 [hep-th].
  68. G. Basar and G. V. Dunne, “Hydrodynamics, resurgence, and transasymptotics,” Phys. Rev. D 92 no. 12, (2015) 125011, arXiv:1509.05046 [hep-th].
  69. J. Casalderrey-Solana, N. I. Gushterov, and B. Meiring, “Resurgence and Hydrodynamic Attractors in Gauss-Bonnet Holography,” JHEP 04 (2018) 042, arXiv:1712.02772 [hep-th].
  70. A. Behtash, C. N. Cruz-Camacho, and M. Martinez, “Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow,” Phys. Rev. D 97 no. 4, (2018) 044041, arXiv:1711.01745 [hep-th].
  71. M. P. Heller and V. Svensson, “How does relativistic kinetic theory remember about initial conditions?,” Phys. Rev. D 98 no. 5, (2018) 054016, arXiv:1802.08225 [nucl-th].
  72. M. P. Heller, A. Serantes, M. Spaliński, V. Svensson, and B. Withers, “The hydrodynamic gradient expansion in linear response theory,” arXiv:2007.05524 [hep-th].
  73. I. Aniceto, B. Meiring, J. Jankowski, and M. Spaliński, “The large proper-time expansion of Yang-Mills plasma as a resurgent transseries,” JHEP 02 (2019) 073, arXiv:1810.07130 [hep-th].
  74. A. Behtash, S. Kamata, M. Martinez, T. Schäfer, and V. Skokov, “Transasymptotics and hydrodynamization of the Fokker-Planck equation for gluons,” Phys. Rev. D 103 no. 5, (2021) 056010, arXiv:2011.08235 [hep-ph].
  75. L. Griguolo, R. Panerai, J. Papalini, and D. Seminara, “Nonperturbative effects and resurgence in Jackiw-Teitelboim gravity at finite cutoff,” Phys. Rev. D 105 no. 4, (2022) 046015, arXiv:2106.01375 [hep-th].
  76. P. Gregori and R. Schiappa, “From Minimal Strings towards Jackiw-Teitelboim Gravity: On their Resurgence, Resonance, and Black Holes,” arXiv:2108.11409 [hep-th].
  77. B. Eynard, E. Garcia-Failde, P. Gregori, D. Lewanski, and R. Schiappa, “Resurgent Asymptotics of Jackiw-Teitelboim Gravity and the Nonperturbative Topological Recursion,” arXiv:2305.16940 [hep-th].
  78. G. V. Dunne and M. Unsal, “Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model,” JHEP 11 (2012) 170, arXiv:1210.2423 [hep-th].
  79. G. V. Dunne and M. Unsal, “Continuity and Resurgence: towards a continuum definition of the ℂ⁢ℙℂℙ\mathbb{CP}blackboard_C blackboard_P(N-1) model,” Phys. Rev. D87 (2013) 025015, arXiv:1210.3646 [hep-th].
  80. A. Cherman, D. Dorigoni, G. V. Dunne, and M. Unsal, “Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model,” Phys. Rev. Lett. 112 (2014) 021601, arXiv:1308.0127 [hep-th].
  81. A. Cherman, D. Dorigoni, and M. Unsal, “Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles,” JHEP 10 (2015) 056, arXiv:1403.1277 [hep-th].
  82. T. Misumi, M. Nitta, and N. Sakai, “Neutral bions in the ℂ⁢PN−1ℂsuperscript𝑃𝑁1{\mathbb{C}}P^{N-1}blackboard_C italic_P start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT model,” JHEP 06 (2014) 164, arXiv:1404.7225 [hep-th].
  83. A. Behtash, T. Sulejmanpasic, T. Schäfer, and M. Ünsal, “Hidden topological angles and Lefschetz thimbles,” Phys. Rev. Lett. 115 no. 4, (2015) 041601, arXiv:1502.06624 [hep-th].
  84. G. V. Dunne and M. Unsal, “Resurgence and Dynamics of O(N) and Grassmannian Sigma Models,” JHEP 09 (2015) 199, arXiv:1505.07803 [hep-th].
  85. P. V. Buividovich, G. V. Dunne, and S. N. Valgushev, “Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory,” Phys. Rev. Lett. 116 no. 13, (2016) 132001, arXiv:1512.09021 [hep-th].
  86. S. Demulder, D. Dorigoni, and D. C. Thompson, “Resurgence in η𝜂\etaitalic_η-deformed Principal Chiral Models,” JHEP 07 (2016) 088, arXiv:1604.07851 [hep-th].
  87. K. Okuyama and K. Sakai, “Resurgence analysis of 2d Yang-Mills theory on a torus,” JHEP 08 (2018) 065, arXiv:1806.00189 [hep-th].
  88. M. Mariño and T. Reis, “Renormalons in integrable field theories,” JHEP 04 (2020) 160, arXiv:1909.12134 [hep-th].
  89. M. Mariño and T. Reis, “A new renormalon in two dimensions,” JHEP 07 (2020) 216, arXiv:1912.06228 [hep-th].
  90. M. C. Abbott, Z. Bajnok, J. Balog, A. Hegedús, and S. Sadeghian, “Resurgence in the O(4) sigma model,” arXiv:2011.12254 [hep-th].
  91. M. C. Abbott, Z. Bajnok, J. Balog, and A. Hegedús, “From perturbative to non-perturbative in the O(4) sigma model,” arXiv:2011.09897 [hep-th].
  92. M. Marino, R. Miravitllas, and T. Reis, “Testing the Bethe ansatz with large N renormalons,” Eur. Phys. J. ST 230 no. 12-13, (2021) 2641–2666, arXiv:2102.03078 [hep-th].
  93. L. Di Pietro, M. Mariño, G. Sberveglieri, and M. Serone, “Resurgence and 1/N Expansion in Integrable Field Theories,” JHEP 10 (2021) 166, arXiv:2108.02647 [hep-th].
  94. M. Marino, R. Miravitllas, and T. Reis, “New renormalons from analytic trans-series,” JHEP 08 (2022) 279, arXiv:2111.11951 [hep-th].
  95. M. Marino, R. Miravitllas, and T. Reis, “Instantons, renormalons and the theta angle in integrable sigma models,” SciPost Phys. 15 no. 5, (2023) 184, arXiv:2205.04495 [hep-th].
  96. T. Reis, On the resurgence of renormalons in integrable theories. PhD thesis, U. Geneva (main), 2022. arXiv:2209.15386 [hep-th].
  97. M. Marino, R. Miravitllas, and T. Reis, “On the structure of trans-series in quantum field theory,” arXiv:2302.08363 [hep-th].
  98. S. Gukov, M. Marino, and P. Putrov, “Resurgence in complex Chern-Simons theory,” arXiv:1605.07615 [hep-th].
  99. D. Gang and Y. Hatsuda, “S-duality resurgence in SL(2) Chern-Simons theory,” JHEP 07 (2018) 053, arXiv:1710.09994 [hep-th].
  100. D. H. Wu, “Resurgent analysis of SU(2) Chern-Simons partition function on Brieskorn spheres Σ⁢(2,3,6⁢n+5)Σ236𝑛5\Sigma(2,3,6n+5)roman_Σ ( 2 , 3 , 6 italic_n + 5 ),” JHEP 21 (2020) 008, arXiv:2010.13736 [hep-th].
  101. F. Ferrari and P. Putrov, “Supergroups, q-series and 3-manifolds,” arXiv:2009.14196 [hep-th].
  102. S. Gukov and C. Manolescu, “A two-variable series for knot complements,” arXiv:1904.06057 [math.GT].
  103. S. Garoufalidis, J. Gu, and M. Marino, “The resurgent structure of quantum knot invariants,” arXiv:2007.10190 [hep-th].
  104. H. Fuji, K. Iwaki, H. Murakami, and Y. Terashima, “Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds,” arXiv:2007.15872 [math.GT].
  105. S. Garoufalidis, J. Gu, M. Marino, and C. Wheeler, “Resurgence of Chern-Simons theory at the trivial flat connection,” arXiv:2111.04763 [math.GT].
  106. N. Dondi, I. Kalogerakis, D. Orlando, and S. Reffert, “Resurgence of the large-charge expansion,” arXiv:2102.12488 [hep-th].
  107. P. Argyres and M. Unsal, “A semiclassical realization of infrared renormalons,” Phys. Rev. Lett. 109 (2012) 121601, arXiv:1204.1661 [hep-th].
  108. G. V. Dunne, M. Shifman, and M. Unsal, “Infrared Renormalons versus Operator Product Expansions in Supersymmetric and Related Gauge Theories,” Phys. Rev. Lett. 114 no. 19, (2015) 191601, arXiv:1502.06680 [hep-th].
  109. H. Mera, T. G. Pedersen, and B. K. Nikolić, “Fast summation of divergent series and resurgent transseries from Meijer- G approximants,” Phys. Rev. D 97 no. 10, (2018) 105027, arXiv:1802.06034 [hep-th].
  110. F. Canfora, M. Lagos, S. H. Oh, J. Oliva, and A. Vera, “Analytic (3+1)-dimensional gauged Skyrmions, Heun, and Whittaker-Hill equations and resurgence,” Phys. Rev. D 98 no. 8, (2018) 085003, arXiv:1809.10386 [hep-th].
  111. M. Ünsal, “Strongly coupled QFT dynamics via TQFT coupling,” arXiv:2007.03880 [hep-th].
  112. M. Borinsky, G. V. Dunne, and M. Meynig, “Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson-Schwinger Equations: ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT QFT in 6 Dimensions,” SIGMA 17 (2021) 087, arXiv:2104.00593 [hep-th].
  113. M. Borinsky and D. Broadhurst, “Resonant resurgent asymptotics from quantum field theory,” Nucl. Phys. B 981 (2022) 115861, arXiv:2202.01513 [hep-th].
  114. J. G. Russo, “A Note on perturbation series in supersymmetric gauge theories,” JHEP 06 (2012) 038, arXiv:1203.5061 [hep-th].
  115. I. Aniceto, J. G. Russo, and R. Schiappa, “Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories,” JHEP 03 (2015) 172, arXiv:1410.5834 [hep-th].
  116. I. Aniceto, “The Resurgence of the Cusp Anomalous Dimension,” J. Phys. A 49 (2016) 065403, arXiv:1506.03388 [hep-th].
  117. M. Honda, “Borel Summability of Perturbative Series in 4D N=2𝑁2N=2italic_N = 2 and 5D N𝑁Nitalic_N=1 Supersymmetric Theories,” Phys. Rev. Lett. 116 no. 21, (2016) 211601, arXiv:1603.06207 [hep-th].
  118. M. Honda, “How to resum perturbative series in 3d N=2 Chern-Simons matter theories,” Phys. Rev. D94 no. 2, (2016) 025039, arXiv:1604.08653 [hep-th].
  119. M. Honda, “Role of Complexified Supersymmetric Solutions,” arXiv:1710.05010 [hep-th].
  120. S. Gukov, D. Pei, P. Putrov, and C. Vafa, “BPS spectra and 3-manifold invariants,” J. Knot Theor. Ramifications 29 no. 02, (2020) 2040003, arXiv:1701.06567 [hep-th].
  121. D. Dorigoni and P. Glass, “The grin of Cheshire cat resurgence from supersymmetric localization,” SciPost Phys. 4 no. 2, (2018) 012, arXiv:1711.04802 [hep-th].
  122. M. Honda and D. Yokoyama, “Resumming perturbative series in the presence of monopole bubbling effects,” Phys. Rev. D 100 no. 2, (2019) 025012, arXiv:1711.10799 [hep-th].
  123. T. Fujimori, M. Honda, S. Kamata, T. Misumi, and N. Sakai, “Resurgence and Lefschetz thimble in three-dimensional 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetric Chern–Simons matter theories,” PTEP 2018 no. 12, (2018) 123B03, arXiv:1805.12137 [hep-th].
  124. A. Grassi, J. Gu, and M. Mariño, “Non-perturbative approaches to the quantum Seiberg-Witten curve,” JHEP 07 (2020) 106, arXiv:1908.07065 [hep-th].
  125. D. Dorigoni and P. Glass, “Picard-Lefschetz decomposition and Cheshire Cat resurgence in 3D 𝒩𝒩\mathcal{N}caligraphic_N = 2 field theories,” JHEP 12 (2019) 085, arXiv:1909.05262 [hep-th].
  126. D. Dorigoni, M. B. Green, and C. Wen, “Exact properties of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 S⁢U⁢(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) SYM,” arXiv:2102.09537 [hep-th].
  127. T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, and T. Yoda, “Quantum phase transition and resurgence: Lessons from three-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric quantum electrodynamics,” PTEP 2021 no. 10, (2021) 103B04, arXiv:2103.13654 [hep-th].
  128. M. Beccaria, G. V. Dunne, and A. A. Tseytlin, “Strong coupling expansion of free energy and BPS Wilson loop in 𝒩𝒩\mathcal{N}caligraphic_N = 2 superconformal models with fundamental hypermultiplets,” JHEP 08 (2021) 102, arXiv:2105.14729 [hep-th].
  129. Y. Hatsuda and M. Kimura, “Spectral Problems for Quasinormal Modes of Black Holes,” Universe 7 no. 12, (2021) 476, arXiv:2111.15197 [gr-qc].
  130. Y. Hatsuda, “Quasinormal modes of black holes and Borel summation,” Phys. Rev. D 101 no. 2, (2020) 024008, arXiv:1906.07232 [gr-qc].
  131. J. Matyjasek and M. Telecka, “Quasinormal modes of black holes. II. Padé summation of the higher-order WKB terms,” Phys. Rev. D 100 no. 12, (2019) 124006, arXiv:1908.09389 [gr-qc].
  132. D. S. Eniceicu and M. Reece, “Quasinormal modes of charged fields in Reissner-Nordström backgrounds by Borel-Padé summation of Bender-Wu series,” Phys. Rev. D 102 no. 4, (2020) 044015, arXiv:1912.05553 [gr-qc].
  133. M. Honda, R. Jinno, L. Pinol, and K. Tokeshi, “Borel resummation of secular divergences in stochastic inflation,” JHEP 08 (2023) 060, arXiv:2304.02592 [hep-th].
  134. E. S. Fradkin and G. A. Vilkovisky, “QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS,” Phys. Lett. B 55 (1975) 224–226.
  135. I. A. Batalin and G. A. Vilkovisky, “Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints,” Phys. Lett. B 69 (1977) 309–312.
  136. J. J. Halliwell, “Derivation of the Wheeler-De Witt Equation from a Path Integral for Minisuperspace Models,” Phys. Rev. D 38 (1988) 2468.
  137. C. Teitelboim, “Causality Versus Gauge Invariance in Quantum Gravity and Supergravity,” Phys. Rev. Lett. 50 (1983) 705.
  138. T. Kanazawa and Y. Tanizaki, “Structure of Lefschetz thimbles in simple fermionic systems,” JHEP 03 (2015) 044, arXiv:1412.2802 [hep-th].
  139. H. Fujii, S. Kamata, and Y. Kikukawa, “Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density,” JHEP 12 (2015) 125, arXiv:1509.09141 [hep-lat]. [Erratum: JHEP 09, 172 (2016)].
  140. J. Feldbrugge, J.-L. Lehners, and N. Turok, “No smooth beginning for spacetime,” Phys. Rev. Lett. 119 no. 17, (2017) 171301, arXiv:1705.00192 [hep-th].
  141. J. Feldbrugge, J.-L. Lehners, and N. Turok, “Inconsistencies of the New No-Boundary Proposal,” Universe 4 no. 10, (2018) 100, arXiv:1805.01609 [hep-th].
  142. J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, O. Janssen, and Y. Vreys, “Damped perturbations in the no-boundary state,” Phys. Rev. Lett. 121 no. 8, (2018) 081302, arXiv:1804.01102 [gr-qc].
  143. J. J. Halliwell, J. B. Hartle, and T. Hertog, “What is the No-Boundary Wave Function of the Universe?,” Phys. Rev. D 99 no. 4, (2019) 043526, arXiv:1812.01760 [hep-th].
  144. O. Janssen, J. J. Halliwell, and T. Hertog, “No-boundary proposal in biaxial Bianchi IX minisuperspace,” Phys. Rev. D 99 no. 12, (2019) 123531, arXiv:1904.11602 [gr-qc].
  145. A. Vilenkin and M. Yamada, “Tunneling wave function of the universe,” Phys. Rev. D 98 no. 6, (2018) 066003, arXiv:1808.02032 [gr-qc].
  146. A. Vilenkin and M. Yamada, “Tunneling wave function of the universe II: the backreaction problem,” Phys. Rev. D 99 no. 6, (2019) 066010, arXiv:1812.08084 [gr-qc].
  147. M. Bojowald and S. Brahma, “Loops rescue the no-boundary proposal,” Phys. Rev. Lett. 121 no. 20, (2018) 201301, arXiv:1810.09871 [gr-qc].
  148. A. Di Tucci and J.-L. Lehners, “Unstable no-boundary fluctuations from sums over regular metrics,” Phys. Rev. D 98 no. 10, (2018) 103506, arXiv:1806.07134 [gr-qc].
  149. A. Di Tucci and J.-L. Lehners, “No-Boundary Proposal as a Path Integral with Robin Boundary Conditions,” Phys. Rev. Lett. 122 no. 20, (2019) 201302, arXiv:1903.06757 [hep-th].
  150. A. Di Tucci, J.-L. Lehners, and L. Sberna, “No-boundary prescriptions in Lorentzian quantum cosmology,” Phys. Rev. D 100 no. 12, (2019) 123543, arXiv:1911.06701 [hep-th].
  151. J.-L. Lehners, “Wave function of simple universes analytically continued from negative to positive potentials,” Phys. Rev. D 104 no. 6, (2021) 063527, arXiv:2105.12075 [hep-th].
  152. H. Matsui, S. Mukohyama, and A. Naruko, “No smooth spacetime in Lorentzian quantum cosmology and trans-Planckian physics,” Phys. Rev. D 107 no. 4, (2023) 043511, arXiv:2211.05306 [gr-qc].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 8 likes.