Resurgence in Lorentzian quantum cosmology: No-boundary saddles and resummation of quantum gravity corrections around tunneling saddle points (2402.09981v3)
Abstract: We revisit the path-integral approach to the wave function of the Universe by utilizing Lefschetz thimble analyses and resurgence theory. The traditional Euclidean path-integral of gravity has the notorious ambiguity of the direction of Wick rotation. In contrast, the Lorentzian method can be formulated concretely with the Picard-Lefschetz theory. Yet, a challenge remains: the physical parameter space lies on a Stokes line, meaning that the Lefschetz-thimble structure is still unclear. Through complex deformations, we resolve this issue by uniquely identifying the thimble structure. This leads to the tunneling wave function, as opposed to the no-boundary wave function, offering a more rigorous proof of the previous results. Further exploring the parameter space, we discover rich structures: the ambiguity of the Borel resummation of perturbative series around the tunneling saddle points is exactly canceled by the ambiguity of the contributions from no-boundary saddle points. This indicates that resurgence also works in quantum cosmology, particularly in the minisuperspace model.
- S. W. Hawking, “Quantum Gravity and Path Integrals,” Phys. Rev. D 18 (1978) 1747–1753.
- J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28 (1983) 2960–2975.
- A. Vilenkin, “Creation of Universes from Nothing,” Phys. Lett. B 117 (1982) 25–28.
- G. W. Gibbons, S. W. Hawking, and M. J. Perry, “Path Integrals and the Indefiniteness of the Gravitational Action,” Nucl. Phys. B 138 (1978) 141–150.
- A. D. Linde, “Quantum Creation of the Inflationary Universe,” Lett. Nuovo Cim. 39 (1984) 401–405.
- J. J. Halliwell and J. Louko, “Steepest Descent Contours in the Path Integral Approach to Quantum Cosmology. 1. The De Sitter Minisuperspace Model,” Phys. Rev. D 39 (1989) 2206.
- A. Vilenkin, “Quantum Creation of Universes,” Phys. Rev. D 30 (1984) 509–511.
- A. D. Linde, “Quantum creation of an inflationary universe,” Sov. Phys. JETP 60 (1984) 211–213.
- A. D. Linde, “The Inflationary Universe,” Rept. Prog. Phys. 47 (1984) 925–986.
- V. A. Rubakov, “Quantum Mechanics in the Tunneling Universe,” Phys. Lett. B 148 (1984) 280–286.
- Y. B. Zeldovich and A. A. Starobinsky, “Quantum creation of a universe in a nontrivial topology,” Sov. Astron. Lett. 10 (1984) 135.
- A. Vilenkin, “Boundary Conditions in Quantum Cosmology,” Phys. Rev. D 33 (1986) 3560.
- A. Vilenkin, “Quantum Cosmology and the Initial State of the Universe,” Phys. Rev. D 37 (1988) 888.
- J. Feldbrugge, J.-L. Lehners, and N. Turok, “Lorentzian Quantum Cosmology,” Phys. Rev. D 95 no. 10, (2017) 103508, arXiv:1703.02076 [hep-th].
- F. PHAM, “Vanishing homologies and the n variables saddlepoint method,” Proc. Symp. Pure Math. 40 (1983) 310–333.
- M. V. Berry and C. J. Howls, “Hyperasymptotics for integrals with saddles,” Proceedings: Mathematical and Physical Sciences 434 no. 1892, (1991) 657–675.
- C. J. Howls, “Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453 no. 1966, (1997) 2271–2294.
- E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].
- Z.-G. Mou, P. M. Saffin, A. Tranberg, and S. Woodward, “Real-time quantum dynamics, path integrals and the method of thimbles,” JHEP 06 (2019) 094, arXiv:1902.09147 [hep-lat].
- Z.-G. Mou, P. M. Saffin, and A. Tranberg, “Quantum tunnelling, real-time dynamics and Picard-Lefschetz thimbles,” JHEP 11 (2019) 135, arXiv:1909.02488 [hep-th].
- P. Millington, Z.-G. Mou, P. M. Saffin, and A. Tranberg, “Statistics on Lefschetz thimbles: Bell/Leggett-Garg inequalities and the classical-statistical approximation,” JHEP 03 (2021) 077, arXiv:2011.02657 [hep-th].
- H. Matsui, “Lorentzian path integral for quantum tunneling and WKB approximation for wave-function,” Eur. Phys. J. C 82 no. 5, (2022) 426, arXiv:2102.09767 [gr-qc].
- K. Rajeev, “Lorentzian worldline path integral approach to Schwinger effect,” Phys. Rev. D 104 no. 10, (2021) 105014, arXiv:2105.12194 [hep-th].
- T. Hayashi, K. Kamada, N. Oshita, and J. Yokoyama, “Vacuum decay in the Lorentzian path integral,” JCAP 05 no. 05, (2022) 041, arXiv:2112.09284 [hep-th].
- J. Feldbrugge and N. Turok, “Existence of real time quantum path integrals,” Annals Phys. 454 (2023) 169315, arXiv:2207.12798 [hep-th].
- J. Nishimura, K. Sakai, and A. Yosprakob, “A new picture of quantum tunneling in the real-time path integral from Lefschetz thimble calculations,” JHEP 09 (2023) 110, arXiv:2307.11199 [hep-th].
- J. Feldbrugge, D. L. Jow, and U.-L. Pen, “Complex classical paths in quantum reflections and tunneling,” arXiv:2309.12420 [quant-ph].
- J. Feldbrugge, D. L. Jow, and U.-L. Pen, “Crossing singularities in the saddle point approximation,” arXiv:2309.12427 [quant-ph].
- R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity,” Gen. Rel. Grav. 40 (2008) 1997–2027, arXiv:gr-qc/0405109.
- G. Fanaras and A. Vilenkin, “Jackiw-Teitelboim and Kantowski-Sachs quantum cosmology,” JCAP 03 no. 03, (2022) 056, arXiv:2112.00919 [gr-qc].
- G. Narain, “On Gauss-bonnet gravity and boundary conditions in Lorentzian path-integral quantization,” JHEP 05 (2021) 273, arXiv:2101.04644 [gr-qc].
- G. Narain, “Surprises in Lorentzian path-integral of Gauss-Bonnet gravity,” JHEP 04 (2022) 153, arXiv:2203.05475 [gr-qc].
- M. Ailiga, S. Mallik, and G. Narain, “Lorentzian Robin Universe,” JHEP 01 (2024) 124, arXiv:2308.01310 [gr-qc].
- J.-L. Lehners, “Review of the no-boundary wave function,” Phys. Rept. 1022 (2023) 1–82, arXiv:2303.08802 [hep-th].
- H. Matsui and S. Mukohyama, “Hartle-Hawking no-boundary proposal and Hořava-Lifshitz gravity,” Phys. Rev. D 109 no. 2, (2024) 023504, arXiv:2310.00210 [gr-qc].
- J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, and O. Janssen, “Real no-boundary wave function in Lorentzian quantum cosmology,” Phys. Rev. D 96 no. 4, (2017) 043505, arXiv:1705.05340 [gr-qc].
- J. Feldbrugge, J.-L. Lehners, and N. Turok, “No rescue for the no boundary proposal: Pointers to the future of quantum cosmology,” Phys. Rev. D 97 no. 2, (2018) 023509, arXiv:1708.05104 [hep-th].
- J. Ecalle, “Un analogue des fonctions automorphes : les fonctions résurgentes,” Séminaire Choquet. Initiation à l’analyse 17 no. 1, (1977-1978) . talk:11.
- Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Hoboken, NJ, 2008.
- M. Marino, “Lectures on non-perturbative effects in large N gauge theories, matrix models and strings,” arXiv:1206.6272 [hep-th].
- D. Dorigoni, “An Introduction to Resurgence, Trans-Series and Alien Calculus,” Annals Phys. 409 (2019) 167914, arXiv:1411.3585 [hep-th].
- I. Aniceto, G. Başar, and R. Schiappa, “A primer on resurgent transseries and their asymptotics,” Physics Reports 809 (2019) 1–135.
- D. Sauzin, “Introduction to 1-summability and resurgence,” arXiv:1405.0356 [math.DS].
- M. Marino, R. Schiappa, and M. Weiss, “Multi-Instantons and Multi-Cuts,” J. Math. Phys. 50 (2009) 052301, arXiv:0809.2619 [hep-th].
- S. Garoufalidis, A. Its, A. Kapaev, and M. Marino, “Asymptotics of the instantons of Painlevé I,” Int. Math. Res. Not. 2012 no. 3, (2012) 561–606, arXiv:1002.3634 [math.CA].
- C.-T. Chan, H. Irie, and C.-H. Yeh, “Stokes Phenomena and Non-perturbative Completion in the Multi-cut Two-matrix Models,” Nucl. Phys. B 854 (2012) 67–132, arXiv:1011.5745 [hep-th].
- C.-T. Chan, H. Irie, and C.-H. Yeh, “Stokes Phenomena and Quantum Integrability in Non-critical String/M Theory,” Nucl. Phys. B 855 (2012) 46–81, arXiv:1109.2598 [hep-th].
- R. Schiappa and R. Vaz, “The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painleve II Equation,” Commun. Math. Phys. 330 (2014) 655–721, arXiv:1302.5138 [hep-th].
- M. Marino, “Open string amplitudes and large order behavior in topological string theory,” JHEP 03 (2008) 060, arXiv:hep-th/0612127.
- M. Marino, R. Schiappa, and M. Weiss, “Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings,” Commun. Num. Theor. Phys. 2 (2008) 349–419, arXiv:0711.1954 [hep-th].
- M. Marino, “Nonperturbative effects and nonperturbative definitions in matrix models and topological strings,” JHEP 12 (2008) 114, arXiv:0805.3033 [hep-th].
- S. Pasquetti and R. Schiappa, “Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models,” Annales Henri Poincare 11 (2010) 351–431, arXiv:0907.4082 [hep-th].
- I. Aniceto, R. Schiappa, and M. Vonk, “The Resurgence of Instantons in String Theory,” Commun. Num. Theor. Phys. 6 (2012) 339–496, arXiv:1106.5922 [hep-th].
- R. Couso-Santamaría, J. D. Edelstein, R. Schiappa, and M. Vonk, “Resurgent Transseries and the Holomorphic Anomaly,” Annales Henri Poincare 17 no. 2, (2016) 331–399, arXiv:1308.1695 [hep-th].
- R. Couso-Santamaría, J. D. Edelstein, R. Schiappa, and M. Vonk, “Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local ℂℙ2ℂsuperscriptℙ2{\mathbb{C}\mathbb{P}^{2}}blackboard_C blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” Commun. Math. Phys. 338 no. 1, (2015) 285–346, arXiv:1407.4821 [hep-th].
- A. Grassi, M. Marino, and S. Zakany, “Resumming the string perturbation series,” JHEP 05 (2015) 038, arXiv:1405.4214 [hep-th].
- R. Couso-Santamaría, R. Schiappa, and R. Vaz, “Finite N from Resurgent Large N,” Annals Phys. 356 (2015) 1–28, arXiv:1501.01007 [hep-th].
- R. Couso-Santamaría, R. Schiappa, and R. Vaz, “On asymptotics and resurgent structures of enumerative Gromov–Witten invariants,” Commun. Num. Theor. Phys. 11 (2017) 707–790, arXiv:1605.07473 [math.AG].
- R. Couso-Santamaría, M. Marino, and R. Schiappa, “Resurgence Matches Quantization,” J. Phys. A 50 no. 14, (2017) 145402, arXiv:1610.06782 [hep-th].
- T. Kuroki and F. Sugino, “Resurgence of one-point functions in a matrix model for 2D type IIA superstrings,” JHEP 05 (2019) 138, arXiv:1901.10349 [hep-th].
- T. Kuroki, “Two-point functions at arbitrary genus and its resurgence structure in a matrix model for 2D type IIA superstrings,” JHEP 07 (2020) 118, arXiv:2004.13346 [hep-th].
- D. Dorigoni, A. Kleinschmidt, and R. Treilis, “To the cusp and back: resurgent analysis for modular graph functions,” JHEP 11 (2022) 048, arXiv:2208.14087 [hep-th].
- S. Baldino, R. Schiappa, M. Schwick, and R. Vega, “Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity,” Commun. Num. Theor. Phys. 17 no. 2, (2023) 385–552, arXiv:2203.13726 [hep-th].
- R. Schiappa, M. Schwick, and N. Tamarin, “All the D-Branes of Resurgence,” arXiv:2301.05214 [hep-th].
- K. Iwaki and M. Marino, “Resurgent Structure of the Topological String and the First Painlevé Equation,” arXiv:2307.02080 [hep-th].
- S. Alexandrov, M. Marino, and B. Pioline, “Resurgence of refined topological strings and dual partition functions,” arXiv:2311.17638 [hep-th].
- I. Aniceto and M. Spaliński, “Resurgence in Extended Hydrodynamics,” Phys. Rev. D 93 no. 8, (2016) 085008, arXiv:1511.06358 [hep-th].
- G. Basar and G. V. Dunne, “Hydrodynamics, resurgence, and transasymptotics,” Phys. Rev. D 92 no. 12, (2015) 125011, arXiv:1509.05046 [hep-th].
- J. Casalderrey-Solana, N. I. Gushterov, and B. Meiring, “Resurgence and Hydrodynamic Attractors in Gauss-Bonnet Holography,” JHEP 04 (2018) 042, arXiv:1712.02772 [hep-th].
- A. Behtash, C. N. Cruz-Camacho, and M. Martinez, “Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow,” Phys. Rev. D 97 no. 4, (2018) 044041, arXiv:1711.01745 [hep-th].
- M. P. Heller and V. Svensson, “How does relativistic kinetic theory remember about initial conditions?,” Phys. Rev. D 98 no. 5, (2018) 054016, arXiv:1802.08225 [nucl-th].
- M. P. Heller, A. Serantes, M. Spaliński, V. Svensson, and B. Withers, “The hydrodynamic gradient expansion in linear response theory,” arXiv:2007.05524 [hep-th].
- I. Aniceto, B. Meiring, J. Jankowski, and M. Spaliński, “The large proper-time expansion of Yang-Mills plasma as a resurgent transseries,” JHEP 02 (2019) 073, arXiv:1810.07130 [hep-th].
- A. Behtash, S. Kamata, M. Martinez, T. Schäfer, and V. Skokov, “Transasymptotics and hydrodynamization of the Fokker-Planck equation for gluons,” Phys. Rev. D 103 no. 5, (2021) 056010, arXiv:2011.08235 [hep-ph].
- L. Griguolo, R. Panerai, J. Papalini, and D. Seminara, “Nonperturbative effects and resurgence in Jackiw-Teitelboim gravity at finite cutoff,” Phys. Rev. D 105 no. 4, (2022) 046015, arXiv:2106.01375 [hep-th].
- P. Gregori and R. Schiappa, “From Minimal Strings towards Jackiw-Teitelboim Gravity: On their Resurgence, Resonance, and Black Holes,” arXiv:2108.11409 [hep-th].
- B. Eynard, E. Garcia-Failde, P. Gregori, D. Lewanski, and R. Schiappa, “Resurgent Asymptotics of Jackiw-Teitelboim Gravity and the Nonperturbative Topological Recursion,” arXiv:2305.16940 [hep-th].
- G. V. Dunne and M. Unsal, “Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model,” JHEP 11 (2012) 170, arXiv:1210.2423 [hep-th].
- G. V. Dunne and M. Unsal, “Continuity and Resurgence: towards a continuum definition of the ℂℙℂℙ\mathbb{CP}blackboard_C blackboard_P(N-1) model,” Phys. Rev. D87 (2013) 025015, arXiv:1210.3646 [hep-th].
- A. Cherman, D. Dorigoni, G. V. Dunne, and M. Unsal, “Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model,” Phys. Rev. Lett. 112 (2014) 021601, arXiv:1308.0127 [hep-th].
- A. Cherman, D. Dorigoni, and M. Unsal, “Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles,” JHEP 10 (2015) 056, arXiv:1403.1277 [hep-th].
- T. Misumi, M. Nitta, and N. Sakai, “Neutral bions in the ℂPN−1ℂsuperscript𝑃𝑁1{\mathbb{C}}P^{N-1}blackboard_C italic_P start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT model,” JHEP 06 (2014) 164, arXiv:1404.7225 [hep-th].
- A. Behtash, T. Sulejmanpasic, T. Schäfer, and M. Ünsal, “Hidden topological angles and Lefschetz thimbles,” Phys. Rev. Lett. 115 no. 4, (2015) 041601, arXiv:1502.06624 [hep-th].
- G. V. Dunne and M. Unsal, “Resurgence and Dynamics of O(N) and Grassmannian Sigma Models,” JHEP 09 (2015) 199, arXiv:1505.07803 [hep-th].
- P. V. Buividovich, G. V. Dunne, and S. N. Valgushev, “Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory,” Phys. Rev. Lett. 116 no. 13, (2016) 132001, arXiv:1512.09021 [hep-th].
- S. Demulder, D. Dorigoni, and D. C. Thompson, “Resurgence in η𝜂\etaitalic_η-deformed Principal Chiral Models,” JHEP 07 (2016) 088, arXiv:1604.07851 [hep-th].
- K. Okuyama and K. Sakai, “Resurgence analysis of 2d Yang-Mills theory on a torus,” JHEP 08 (2018) 065, arXiv:1806.00189 [hep-th].
- M. Mariño and T. Reis, “Renormalons in integrable field theories,” JHEP 04 (2020) 160, arXiv:1909.12134 [hep-th].
- M. Mariño and T. Reis, “A new renormalon in two dimensions,” JHEP 07 (2020) 216, arXiv:1912.06228 [hep-th].
- M. C. Abbott, Z. Bajnok, J. Balog, A. Hegedús, and S. Sadeghian, “Resurgence in the O(4) sigma model,” arXiv:2011.12254 [hep-th].
- M. C. Abbott, Z. Bajnok, J. Balog, and A. Hegedús, “From perturbative to non-perturbative in the O(4) sigma model,” arXiv:2011.09897 [hep-th].
- M. Marino, R. Miravitllas, and T. Reis, “Testing the Bethe ansatz with large N renormalons,” Eur. Phys. J. ST 230 no. 12-13, (2021) 2641–2666, arXiv:2102.03078 [hep-th].
- L. Di Pietro, M. Mariño, G. Sberveglieri, and M. Serone, “Resurgence and 1/N Expansion in Integrable Field Theories,” JHEP 10 (2021) 166, arXiv:2108.02647 [hep-th].
- M. Marino, R. Miravitllas, and T. Reis, “New renormalons from analytic trans-series,” JHEP 08 (2022) 279, arXiv:2111.11951 [hep-th].
- M. Marino, R. Miravitllas, and T. Reis, “Instantons, renormalons and the theta angle in integrable sigma models,” SciPost Phys. 15 no. 5, (2023) 184, arXiv:2205.04495 [hep-th].
- T. Reis, On the resurgence of renormalons in integrable theories. PhD thesis, U. Geneva (main), 2022. arXiv:2209.15386 [hep-th].
- M. Marino, R. Miravitllas, and T. Reis, “On the structure of trans-series in quantum field theory,” arXiv:2302.08363 [hep-th].
- S. Gukov, M. Marino, and P. Putrov, “Resurgence in complex Chern-Simons theory,” arXiv:1605.07615 [hep-th].
- D. Gang and Y. Hatsuda, “S-duality resurgence in SL(2) Chern-Simons theory,” JHEP 07 (2018) 053, arXiv:1710.09994 [hep-th].
- D. H. Wu, “Resurgent analysis of SU(2) Chern-Simons partition function on Brieskorn spheres Σ(2,3,6n+5)Σ236𝑛5\Sigma(2,3,6n+5)roman_Σ ( 2 , 3 , 6 italic_n + 5 ),” JHEP 21 (2020) 008, arXiv:2010.13736 [hep-th].
- F. Ferrari and P. Putrov, “Supergroups, q-series and 3-manifolds,” arXiv:2009.14196 [hep-th].
- S. Gukov and C. Manolescu, “A two-variable series for knot complements,” arXiv:1904.06057 [math.GT].
- S. Garoufalidis, J. Gu, and M. Marino, “The resurgent structure of quantum knot invariants,” arXiv:2007.10190 [hep-th].
- H. Fuji, K. Iwaki, H. Murakami, and Y. Terashima, “Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds,” arXiv:2007.15872 [math.GT].
- S. Garoufalidis, J. Gu, M. Marino, and C. Wheeler, “Resurgence of Chern-Simons theory at the trivial flat connection,” arXiv:2111.04763 [math.GT].
- N. Dondi, I. Kalogerakis, D. Orlando, and S. Reffert, “Resurgence of the large-charge expansion,” arXiv:2102.12488 [hep-th].
- P. Argyres and M. Unsal, “A semiclassical realization of infrared renormalons,” Phys. Rev. Lett. 109 (2012) 121601, arXiv:1204.1661 [hep-th].
- G. V. Dunne, M. Shifman, and M. Unsal, “Infrared Renormalons versus Operator Product Expansions in Supersymmetric and Related Gauge Theories,” Phys. Rev. Lett. 114 no. 19, (2015) 191601, arXiv:1502.06680 [hep-th].
- H. Mera, T. G. Pedersen, and B. K. Nikolić, “Fast summation of divergent series and resurgent transseries from Meijer- G approximants,” Phys. Rev. D 97 no. 10, (2018) 105027, arXiv:1802.06034 [hep-th].
- F. Canfora, M. Lagos, S. H. Oh, J. Oliva, and A. Vera, “Analytic (3+1)-dimensional gauged Skyrmions, Heun, and Whittaker-Hill equations and resurgence,” Phys. Rev. D 98 no. 8, (2018) 085003, arXiv:1809.10386 [hep-th].
- M. Ünsal, “Strongly coupled QFT dynamics via TQFT coupling,” arXiv:2007.03880 [hep-th].
- M. Borinsky, G. V. Dunne, and M. Meynig, “Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson-Schwinger Equations: ϕ3superscriptitalic-ϕ3\phi^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT QFT in 6 Dimensions,” SIGMA 17 (2021) 087, arXiv:2104.00593 [hep-th].
- M. Borinsky and D. Broadhurst, “Resonant resurgent asymptotics from quantum field theory,” Nucl. Phys. B 981 (2022) 115861, arXiv:2202.01513 [hep-th].
- J. G. Russo, “A Note on perturbation series in supersymmetric gauge theories,” JHEP 06 (2012) 038, arXiv:1203.5061 [hep-th].
- I. Aniceto, J. G. Russo, and R. Schiappa, “Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories,” JHEP 03 (2015) 172, arXiv:1410.5834 [hep-th].
- I. Aniceto, “The Resurgence of the Cusp Anomalous Dimension,” J. Phys. A 49 (2016) 065403, arXiv:1506.03388 [hep-th].
- M. Honda, “Borel Summability of Perturbative Series in 4D N=2𝑁2N=2italic_N = 2 and 5D N𝑁Nitalic_N=1 Supersymmetric Theories,” Phys. Rev. Lett. 116 no. 21, (2016) 211601, arXiv:1603.06207 [hep-th].
- M. Honda, “How to resum perturbative series in 3d N=2 Chern-Simons matter theories,” Phys. Rev. D94 no. 2, (2016) 025039, arXiv:1604.08653 [hep-th].
- M. Honda, “Role of Complexified Supersymmetric Solutions,” arXiv:1710.05010 [hep-th].
- S. Gukov, D. Pei, P. Putrov, and C. Vafa, “BPS spectra and 3-manifold invariants,” J. Knot Theor. Ramifications 29 no. 02, (2020) 2040003, arXiv:1701.06567 [hep-th].
- D. Dorigoni and P. Glass, “The grin of Cheshire cat resurgence from supersymmetric localization,” SciPost Phys. 4 no. 2, (2018) 012, arXiv:1711.04802 [hep-th].
- M. Honda and D. Yokoyama, “Resumming perturbative series in the presence of monopole bubbling effects,” Phys. Rev. D 100 no. 2, (2019) 025012, arXiv:1711.10799 [hep-th].
- T. Fujimori, M. Honda, S. Kamata, T. Misumi, and N. Sakai, “Resurgence and Lefschetz thimble in three-dimensional 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetric Chern–Simons matter theories,” PTEP 2018 no. 12, (2018) 123B03, arXiv:1805.12137 [hep-th].
- A. Grassi, J. Gu, and M. Mariño, “Non-perturbative approaches to the quantum Seiberg-Witten curve,” JHEP 07 (2020) 106, arXiv:1908.07065 [hep-th].
- D. Dorigoni and P. Glass, “Picard-Lefschetz decomposition and Cheshire Cat resurgence in 3D 𝒩𝒩\mathcal{N}caligraphic_N = 2 field theories,” JHEP 12 (2019) 085, arXiv:1909.05262 [hep-th].
- D. Dorigoni, M. B. Green, and C. Wen, “Exact properties of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) SYM,” arXiv:2102.09537 [hep-th].
- T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, and T. Yoda, “Quantum phase transition and resurgence: Lessons from three-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric quantum electrodynamics,” PTEP 2021 no. 10, (2021) 103B04, arXiv:2103.13654 [hep-th].
- M. Beccaria, G. V. Dunne, and A. A. Tseytlin, “Strong coupling expansion of free energy and BPS Wilson loop in 𝒩𝒩\mathcal{N}caligraphic_N = 2 superconformal models with fundamental hypermultiplets,” JHEP 08 (2021) 102, arXiv:2105.14729 [hep-th].
- Y. Hatsuda and M. Kimura, “Spectral Problems for Quasinormal Modes of Black Holes,” Universe 7 no. 12, (2021) 476, arXiv:2111.15197 [gr-qc].
- Y. Hatsuda, “Quasinormal modes of black holes and Borel summation,” Phys. Rev. D 101 no. 2, (2020) 024008, arXiv:1906.07232 [gr-qc].
- J. Matyjasek and M. Telecka, “Quasinormal modes of black holes. II. Padé summation of the higher-order WKB terms,” Phys. Rev. D 100 no. 12, (2019) 124006, arXiv:1908.09389 [gr-qc].
- D. S. Eniceicu and M. Reece, “Quasinormal modes of charged fields in Reissner-Nordström backgrounds by Borel-Padé summation of Bender-Wu series,” Phys. Rev. D 102 no. 4, (2020) 044015, arXiv:1912.05553 [gr-qc].
- M. Honda, R. Jinno, L. Pinol, and K. Tokeshi, “Borel resummation of secular divergences in stochastic inflation,” JHEP 08 (2023) 060, arXiv:2304.02592 [hep-th].
- E. S. Fradkin and G. A. Vilkovisky, “QUANTIZATION OF RELATIVISTIC SYSTEMS WITH CONSTRAINTS,” Phys. Lett. B 55 (1975) 224–226.
- I. A. Batalin and G. A. Vilkovisky, “Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints,” Phys. Lett. B 69 (1977) 309–312.
- J. J. Halliwell, “Derivation of the Wheeler-De Witt Equation from a Path Integral for Minisuperspace Models,” Phys. Rev. D 38 (1988) 2468.
- C. Teitelboim, “Causality Versus Gauge Invariance in Quantum Gravity and Supergravity,” Phys. Rev. Lett. 50 (1983) 705.
- T. Kanazawa and Y. Tanizaki, “Structure of Lefschetz thimbles in simple fermionic systems,” JHEP 03 (2015) 044, arXiv:1412.2802 [hep-th].
- H. Fujii, S. Kamata, and Y. Kikukawa, “Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density,” JHEP 12 (2015) 125, arXiv:1509.09141 [hep-lat]. [Erratum: JHEP 09, 172 (2016)].
- J. Feldbrugge, J.-L. Lehners, and N. Turok, “No smooth beginning for spacetime,” Phys. Rev. Lett. 119 no. 17, (2017) 171301, arXiv:1705.00192 [hep-th].
- J. Feldbrugge, J.-L. Lehners, and N. Turok, “Inconsistencies of the New No-Boundary Proposal,” Universe 4 no. 10, (2018) 100, arXiv:1805.01609 [hep-th].
- J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, O. Janssen, and Y. Vreys, “Damped perturbations in the no-boundary state,” Phys. Rev. Lett. 121 no. 8, (2018) 081302, arXiv:1804.01102 [gr-qc].
- J. J. Halliwell, J. B. Hartle, and T. Hertog, “What is the No-Boundary Wave Function of the Universe?,” Phys. Rev. D 99 no. 4, (2019) 043526, arXiv:1812.01760 [hep-th].
- O. Janssen, J. J. Halliwell, and T. Hertog, “No-boundary proposal in biaxial Bianchi IX minisuperspace,” Phys. Rev. D 99 no. 12, (2019) 123531, arXiv:1904.11602 [gr-qc].
- A. Vilenkin and M. Yamada, “Tunneling wave function of the universe,” Phys. Rev. D 98 no. 6, (2018) 066003, arXiv:1808.02032 [gr-qc].
- A. Vilenkin and M. Yamada, “Tunneling wave function of the universe II: the backreaction problem,” Phys. Rev. D 99 no. 6, (2019) 066010, arXiv:1812.08084 [gr-qc].
- M. Bojowald and S. Brahma, “Loops rescue the no-boundary proposal,” Phys. Rev. Lett. 121 no. 20, (2018) 201301, arXiv:1810.09871 [gr-qc].
- A. Di Tucci and J.-L. Lehners, “Unstable no-boundary fluctuations from sums over regular metrics,” Phys. Rev. D 98 no. 10, (2018) 103506, arXiv:1806.07134 [gr-qc].
- A. Di Tucci and J.-L. Lehners, “No-Boundary Proposal as a Path Integral with Robin Boundary Conditions,” Phys. Rev. Lett. 122 no. 20, (2019) 201302, arXiv:1903.06757 [hep-th].
- A. Di Tucci, J.-L. Lehners, and L. Sberna, “No-boundary prescriptions in Lorentzian quantum cosmology,” Phys. Rev. D 100 no. 12, (2019) 123543, arXiv:1911.06701 [hep-th].
- J.-L. Lehners, “Wave function of simple universes analytically continued from negative to positive potentials,” Phys. Rev. D 104 no. 6, (2021) 063527, arXiv:2105.12075 [hep-th].
- H. Matsui, S. Mukohyama, and A. Naruko, “No smooth spacetime in Lorentzian quantum cosmology and trans-Planckian physics,” Phys. Rev. D 107 no. 4, (2023) 043511, arXiv:2211.05306 [gr-qc].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.