Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Subspace Decomposition of Coset Codes (2402.09673v1)

Published 15 Feb 2024 in cs.IT and math.IT

Abstract: A new method is explored for analyzing the performance of coset codes over the binary erasure wiretap channel (BEWC) by decomposing the code over subspaces of the code space. This technique leads to an improved algorithm for calculating equivocation loss. It also provides a continuous-valued function for equivocation loss, permitting proofs of local optimality for certain finite-blocklength code constructions, including a code formed by excluding from the generator matrix all columns which lie within a particular subspace. Subspace decomposition is also used to explore the properties of an alternative secrecy code metric, the chi squared divergence. The chi squared divergence is shown to be far simpler to calculate than equivocation loss. Additionally, the codes which are shown to be locally optimal in terms of equivocation are also proved to be globally optimal in terms of chi squared divergence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A. D. Wyner, “The wire-tap channel,” The Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  2. S. Rezaei Aghdam, A. Nooraiepour, and T. M. Duman, “An overview of physical layer security with finite-alphabet signaling,” IEEE Communications Surveys an Tutorials, vol. 21, no. 2, pp. 1829–1850, 2019.
  3. M. Bloch, O. Günlü, A. Yener, F. Oggier, H. V. Poor, L. Sankar, and R. F. Schaefer, “An overview of information-theoretic security and privacy: Metrics, limits and applications,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 5–22, 2021.
  4. W. K. Harrison, J. Almeida, M. R. Bloch, S. W. McLaughlin, and J. Barros, “Coding for secrecy: An overview of error-control coding techniques for physical-layer security,” IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 41–50, Sept. 2013.
  5. M. R. Bloch, M. Hayashi, and A. Thangaraj, “Error-control coding for physical-layer secrecy,” Proceedings of IEEE, vol. 103, no. 10, pp. 1725–1746, Oct. 2015.
  6. H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels using polar codes,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6428–6443, 2011.
  7. A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-M. Merolla, “Applications of LDPC codes to the wiretap channels,” IEEE Transactions on Information Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.
  8. A. Subramanian, A. T. Suresh, S. Raj, A. Thangaraj, M. Bloch, and S. McLaughlin, “Strong and weak secrecy in wiretap channels,” in 2010 6th International Symposium on Turbo Codes and Iterative Information Processing, 2010, pp. 30–34.
  9. M. R. Bloch and J. N. Laneman, “Strong secrecy from channel resolvability,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8077–8098, 2013.
  10. G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.
  11. W. K. Harrison and M. R. Bloch, “Attributes of generators for best finite blocklength coset wiretap codes over erasure channels,” in 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 827–831.
  12. W. K. Harrison and M. R. Bloch, “On dual relationships of secrecy codes,” in 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2018, pp. 366–372.
  13. W. K Harrison, D. Sarmento, J. P Vilela, and M. AC Gomes, “Analysis of short blocklength codes for secrecy,” EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1, pp. 1–15, 2018.
  14. D. Hunn and W. K. Harrison, “Subspace decomposition of extreme-rate secrecy codes,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1235–1240.
  15. J. Pfister, M. A. C. Gomes, J. P. Vilela, and W. K. Harrison, “Quantifying equivocation for finite blocklength wiretap codes,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  16. S. Al-Hassan, M. Z. Ahmed, and M. Tomlinson, “Secrecy coding for the wiretap channel using best known linear codes,” in Global Information Infrastructure Symposium - GIIS 2013, 2013, pp. 1–6.
  17. J. Bell, “Euler and the pentagonal number theorem,” 2005. [Online]. Available: https://arxiv.org/abs/math/0510054
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube