User Modeling and User Profiling: A Comprehensive Survey (2402.09660v2)
Abstract: The integration of AI into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.
- FairUP: A Framework for Fairness Analysis of Graph Neural Network-Based User Profiling Models. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, pages 3165–3169, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 978-1-4503-9408-6. doi:10.1145/3539618.3591814. URL https://dl.acm.org/doi/10.1145/3539618.3591814.
- Analyzing User Modeling on Twitter for Personalized News Recommendations. In Joseph A. Konstan, Ricardo Conejo, José L. Marzo, and Nuria Oliver, editors, User Modeling, Adaption and Personalization, Lecture Notes in Computer Science, pages 1–12, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-22362-4. doi:10.1007/978-3-642-22362-4_1.
- A Classification on Different Aspects of User Modelling in Personalized Web Search. In Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval, NLPIR ’20, pages 194–199, New York, NY, USA, February 2021. Association for Computing Machinery. ISBN 978-1-4503-7760-7. doi:10.1145/3443279.3443291. URL https://dl.acm.org/doi/10.1145/3443279.3443291.
- Iman I. M. Abu Sulayman and Abdelkader Ouda. User Modeling via Anomaly Detection Techniques for User Authentication. In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 0169–0176, Vancouver, BC, Canada, October 2019. IEEE. ISBN 978-1-72812-530-5. doi:10.1109/IEMCON.2019.8936183. URL https://ieeexplore.ieee.org/document/8936183/.
- Exploring user behavioral data for adaptive cybersecurity. User Modeling and User-Adapted Interaction, 29(3):701–750, July 2019. ISSN 1573-1391. doi:10.1007/s11257-019-09236-5. URL https://doi.org/10.1007/s11257-019-09236-5.
- Expert-Driven Validation of Rule-Based User Models in Personalization Applications. Data Mining and Knowledge Discovery, 5(1):33–58, January 2001. ISSN 1573-756X. doi:10.1023/A:1009839827683. URL https://doi.org/10.1023/A:1009839827683.
- Context-Aware Recommender Systems. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook, pages 217–253. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi:10.1007/978-0-387-85820-3_7. URL https://doi.org/10.1007/978-0-387-85820-3_7.
- Modeling User Behavior With Interaction Networks for Spam Detection. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2437–2442, Madrid Spain, July 2022. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3531875. URL https://dl.acm.org/doi/10.1145/3477495.3531875.
- Scoring Users’ Privacy Disclosure Across Multiple Online Social Networks. IEEE Access, 5:13118–13130, 2017. ISSN 2169-3536. doi:10.1109/ACCESS.2017.2720187. URL https://ieeexplore.ieee.org/abstract/document/7959160.
- Tarik Agouti. Graph-based modeling using association rule mining to detect influential users in social networks. Expert Systems with Applications, 202:117436, September 2022. ISSN 0957-4174. doi:10.1016/j.eswa.2022.117436. URL https://www.sciencedirect.com/science/article/pii/S0957417422007722.
- Spam detection on Twitter using a support vector machine and users’ features by identifying their interactions. Multimedia Tools and Applications, 80(8):11583–11605, March 2021. ISSN 1573-7721. doi:10.1007/s11042-020-10405-7. URL https://doi.org/10.1007/s11042-020-10405-7.
- Mohammad Yahya H. Al-Shamri. User profiling approaches for demographic recommender systems. Knowledge-Based Systems, 100:175–187, May 2016. ISSN 0950-7051. doi:10.1016/j.knosys.2016.03.006. URL https://www.sciencedirect.com/science/article/pii/S0950705116001192.
- Building Rich User Profile Based on Intentional Perspective. Procedia Computer Science, 73:342–349, 2015. ISSN 18770509. doi:10.1016/j.procs.2015.12.002. URL https://linkinghub.elsevier.com/retrieve/pii/S1877050915034638.
- Vincent Aleven. Rule-Based Cognitive Modeling for Intelligent Tutoring Systems. In Roger Nkambou, Jacqueline Bourdeau, and Riichiro Mizoguchi, editors, Advances in Intelligent Tutoring Systems, Studies in Computational Intelligence, pages 33–62. Springer, Berlin, Heidelberg, 2010. ISBN 978-3-642-14363-2. doi:10.1007/978-3-642-14363-2_3. URL https://doi.org/10.1007/978-3-642-14363-2_3.
- An Integrated Framework for Web Data Preprocessing Towards Modeling User Behavior. In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pages 1–8, October 2020. doi:10.1109/FarEastCon50210.2020.9271467. URL https://ieeexplore.ieee.org/abstract/document/9271467.
- Preventing profiling for ethical fake news detection. Information Processing & Management, 60(2):103206, March 2023. ISSN 0306-4573. doi:10.1016/j.ipm.2022.103206. URL https://www.sciencedirect.com/science/article/pii/S0306457322003077.
- Internet world guide to one-to-one web marketing. John Wiley & Sons, Inc., 1998.
- XTRA: a natural-language access system to expert systems. International Journal of Man-Machine Studies, 31(2):161–195, August 1989. ISSN 0020-7373. doi:10.1016/0020-7373(89)90026-6. URL https://www.sciencedirect.com/science/article/pii/0020737389900266.
- User Profile Modeling and Applications to Digital Libraries. In Research and Advanced Technology for Digital Libraries, volume 1696, pages 184–197. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-66558-8 978-3-540-48155-3. doi:10.1007/3-540-48155-9_13. URL http://link.springer.com/10.1007/3-540-48155-9_13.
- Rate it again: increasing recommendation accuracy by user re-rating. In Proceedings of the third ACM conference on Recommender systems, RecSys ’09, pages 173–180, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 978-1-60558-435-5. doi:10.1145/1639714.1639744. URL https://dl.acm.org/doi/10.1145/1639714.1639744.
- Neural News Recommendation with Long- and Short-term User Representations. In Anna Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 336–345, Florence, Italy, July 2019. Association for Computational Linguistics. doi:10.18653/v1/P19-1033. URL https://aclanthology.org/P19-1033.
- Sparse Feature Factorization for Recommender Systems with Knowledge Graphs. In Fifteenth ACM Conference on Recommender Systems, pages 154–165, Amsterdam Netherlands, September 2021. ACM. ISBN 978-1-4503-8458-2. doi:10.1145/3460231.3474243. URL https://dl.acm.org/doi/10.1145/3460231.3474243.
- D. Magdalene Delighta Angeline. Association Rule Generation for Student Performance Analysis using Apriori Algorithm. The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 01(01):16–20, April 2013. ISSN 23212373, 23212381. doi:10.9756/SIJCSEA/V1I1/01010252. URL http://www.thesij.com/TableOfContentArticleDetails.aspx?JournalID=1&IssueID=29.
- Using dynamic user models in the recognition of the plans of the user. User Modeling and User-Adapted Interaction, 5(2):157–190, June 1995. ISSN 1573-1391. doi:10.1007/BF01099760. URL https://doi.org/10.1007/BF01099760.
- A Personalized Neighborhood-based Model for Within-basket Recommendation in Grocery Shopping. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pages 87–95, Singapore Singapore, February 2023. ACM. ISBN 978-1-4503-9407-9. doi:10.1145/3539597.3570417. URL https://dl.acm.org/doi/10.1145/3539597.3570417.
- BRUCE: Bundle Recommendation Using Contextualized item Embeddings. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 237–245, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3546754. URL https://dl.acm.org/doi/10.1145/3523227.3546754.
- User Simulation for Evaluating Information Access Systems. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, SIGIR-AP ’23, pages 302–305, New York, NY, USA, November 2023. Association for Computing Machinery. ISBN 9798400704086. doi:10.1145/3624918.3629549. URL https://dl.acm.org/doi/10.1145/3624918.3629549.
- Broad expertise retrieval in sparse data environments. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’07, pages 551–558, New York, NY, USA, 2007. Association for Computing Machinery. ISBN 978-1-59593-597-7. doi:10.1145/1277741.1277836. URL https://dl.acm.org/doi/10.1145/1277741.1277836.
- Expertise retrieval. Foundations and Trends® in Information Retrieval, 6(2–3):127–256, 2012.
- Transparent, Scrutable and Explainable User Models for Personalized Recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 265–274, Paris France, July 2019. ACM. ISBN 978-1-4503-6172-9. doi:10.1145/3331184.3331211. URL https://dl.acm.org/doi/10.1145/3331184.3331211.
- A System for Human-AI collaboration for Online Customer Support, February 2023. URL http://arxiv.org/abs/2301.12158. arXiv:2301.12158 [cs].
- A New Classification Framework to Evaluate the Entity Profiling on the Web: Past, Present and Future. ACM Computing Surveys, 50(3):39:1–39:39, June 2017. ISSN 0360-0300. doi:10.1145/3066904. URL https://dl.acm.org/doi/10.1145/3066904.
- Five-factor model personality traits as predictors of perceived and actual usage of technology. European Journal of Information Systems, 24(4):374–390, July 2015. ISSN 1476-9344. doi:10.1057/ejis.2014.10. URL https://doi.org/10.1057/ejis.2014.10.
- Modelling Long Term Goals. In Vania Dimitrova, Tsvi Kuflik, David Chin, Francesco Ricci, Peter Dolog, and Geert-Jan Houben, editors, User Modeling, Adaptation, and Personalization, Lecture Notes in Computer Science, pages 1–12, Cham, 2014. Springer International Publishing. ISBN 978-3-319-08786-3. doi:10.1007/978-3-319-08786-3_1.
- A Framework for Personalizing Atypical Web Search Sessions with Concept-Based User Profiles Using Selective Machine Learning Techniques. In Monica Bianchini, Vincenzo Piuri, Sanjoy Das, and Rabindra Nath Shaw, editors, Advanced Computing and Intelligent Technologies, Lecture Notes in Networks and Systems, pages 279–291, Singapore, 2022. Springer. ISBN 9789811621642. doi:10.1007/978-981-16-2164-2_23.
- Deep Learning for Visual-Features Extraction Based Personalized User Modeling. SN Computer Science, 3(4):261, April 2022. ISSN 2661-8907. doi:10.1007/s42979-022-01131-y. URL https://doi.org/10.1007/s42979-022-01131-y.
- Characterizing user behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement, IMC ’09, pages 49–62, New York, NY, USA, November 2009. Association for Computing Machinery. ISBN 978-1-60558-771-4. doi:10.1145/1644893.1644900. URL https://dl.acm.org/doi/10.1145/1644893.1644900.
- Towards the Identification of Players’ Profiles Using Game’s Data Analysis Based on Regression Model and Clustering. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM ’15, pages 1403–1410, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3854-7. doi:10.1145/2808797.2809429. URL https://dl.acm.org/doi/10.1145/2808797.2809429.
- Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction, 18(3):245–286, August 2008. ISSN 1573-1391. doi:10.1007/s11257-007-9042-9. URL https://doi.org/10.1007/s11257-007-9042-9.
- Detecting Personality Traits Using Eye-Tracking Data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–12, New York, NY, USA, May 2019. Association for Computing Machinery. ISBN 978-1-4503-5970-2. doi:10.1145/3290605.3300451. URL https://dl.acm.org/doi/10.1145/3290605.3300451.
- User Profile in Absence of Ground Truth for Mobile Users. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC), pages 170–173, January 2019. doi:10.1109/ICOSC.2019.8665580. URL https://ieeexplore.ieee.org/document/8665580.
- Anomaly detection model of user behavior based on principal component analysis. Journal of Ambient Intelligence and Humanized Computing, 7(4):547–554, August 2016. ISSN 1868-5145. doi:10.1007/s12652-015-0341-4. URL https://doi.org/10.1007/s12652-015-0341-4.
- Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3737–3746, Virtual Event Queensland Australia, October 2021. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3481905. URL https://dl.acm.org/doi/10.1145/3459637.3481905.
- A brief survey on user modelling in HCI. In Proceedings of the International Conference on Intelligent Human Computer Interaction (IHCI), 2010.
- Modeling the Preferences of a Group of Users Detected by Clustering: a Group Recommendation Case-Study. In Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), WIMS ’14, pages 1–7, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 978-1-4503-2538-7. doi:10.1145/2611040.2611073. URL https://dl.acm.org/doi/10.1145/2611040.2611073.
- ART: group recommendation approaches for automatically detected groups. International Journal of Machine Learning and Cybernetics, 6(6):953–980, December 2015. ISSN 1868-808X. doi:10.1007/s13042-015-0371-4. URL https://doi.org/10.1007/s13042-015-0371-4.
- A shell for developing non-monotonic user modeling systems. International Journal of Human-Computer Studies, 40(1):31–62, January 1994. ISSN 1071-5819. doi:10.1006/ijhc.1994.1003. URL https://www.sciencedirect.com/science/article/pii/S1071581984710032.
- Sviatoslav Braynov. Personalization and Customization Technologies. In Hossein Bidgoli, editor, The Internet Encyclopedia. Wiley, 1 edition, January 2004. ISBN 978-0-471-22201-9 978-0-471-48296-3. doi:10.1002/047148296X.tie141. URL https://onlinelibrary.wiley.com/doi/10.1002/047148296X.tie141.
- The Adaptive Web: Methods and Strategies of Web Personalization. Springer Science & Business Media, April 2007. ISBN 978-3-540-72078-2.
- Peter Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11(1):87–110, March 2001. ISSN 1573-1391. doi:10.1023/A:1011143116306. URL https://doi.org/10.1023/A:1011143116306.
- Peter Brusilovsky. KnowledgeTree: a distributed architecture for adaptive e-learning. In Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters - WWW Alt. ’04, page 104, New York, NY, USA, 2004. ACM Press. ISBN 978-1-58113-912-9. doi:10.1145/1013367.1013386. URL http://portal.acm.org/citation.cfm?doid=1013367.1013386.
- From adaptive hypermedia to the adaptive web. Communications of the ACM, 45(5):30–33, 2002.
- User Models for Adaptive Hypermedia and Adaptive Educational Systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, pages 3–53. Springer, Berlin, Heidelberg, 2007. ISBN 978-3-540-72079-9. URL https://doi.org/10.1007/978-3-540-72079-9_1.
- Adaptive Hypertext and Hypermedia. Springer Netherlands, Dordrecht, 1998. ISBN 978-90-481-4944-5 978-94-017-0617-9. URL https://link.springer.com/10.1007/978-94-017-0617-9.
- A Rule-Based Approach for Developing a Competency-Oriented User Model for E-Learning Systems. In 2009 Fourth International Conference on Internet and Web Applications and Services, pages 555–560, May 2009. doi:10.1109/ICIW.2009.90.
- Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout. Computers & Electrical Engineering, 66:541–556, February 2018. ISSN 0045-7906. doi:10.1016/j.compeleceng.2017.03.005. URL https://www.sciencedirect.com/science/article/pii/S0045790617305220.
- Mining association rules for anomaly detection in dynamic process runtime behavior and explaining the root cause to users. Information Systems, 90, May 2020. ISSN 0306-4379. doi:10.1016/j.is.2019.101438. URL https://www.sciencedirect.com/science/article/pii/S0306437919304909.
- Learn sesame a learning agent engine. Applied Artificial Intelligence, 11(5):393–412, July 1997. ISSN 0883-9514. doi:10.1080/088395197118109. URL https://doi.org/10.1080/088395197118109.
- Ontology-Based Information Behaviour to Improve Web Search. Future Internet, 2(4):533–558, December 2010. ISSN 1999-5903. doi:10.3390/fi2040533. URL https://www.mdpi.com/1999-5903/2/4/533.
- User preferences modeling using dirichlet process mixture model for a content-based recommender system. Knowledge-Based Systems, 163:644–655, January 2019. ISSN 09507051. doi:10.1016/j.knosys.2018.09.028. URL https://linkinghub.elsevier.com/retrieve/pii/S0950705118304799.
- Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 2974–2983, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557082. URL https://dl.acm.org/doi/10.1145/3511808.3557082.
- User model interoperability: a survey. User Modeling and User-Adapted Interaction, 21(3):285–331, August 2011. ISSN 1573-1391. doi:10.1007/s11257-011-9097-5. URL https://doi.org/10.1007/s11257-011-9097-5.
- Exploiting the use of recurrent neural networks for driver behavior profiling. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 3016–3021, May 2017. doi:10.1109/IJCNN.2017.7966230. URL https://ieeexplore.ieee.org/abstract/document/7966230?casa_token=qdBQ6ZJHlKsAAAAA:G2UJiXLEDC-EizefHgvpQZB0Dn6YZnHsYu0V1PrBUQX2Le9n1kjshOrgclteaWIHyZpw7MEgm41P. ISSN: 2161-4407.
- Similarity-Based Fuzzy Clustering for User Profiling. In 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, pages 75–78, November 2007. doi:10.1109/WI-IATW.2007.32.
- Flexibility management of electric vehicles based on user profiles: The Arnhem case study. International Journal of Electrical Power & Energy Systems, 133:107195, December 2021. ISSN 01420615. doi:10.1016/j.ijepes.2021.107195. URL https://linkinghub.elsevier.com/retrieve/pii/S0142061521004348.
- Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing. Information Systems Frontiers, 21(5):1085–1110, October 2019. ISSN 1572-9419. doi:10.1007/s10796-017-9818-3. URL https://doi.org/10.1007/s10796-017-9818-3.
- Incorporating Personality Traits in User Modeling for EUD. In Proceedings of the 3rd International Workshop on Empowering People in Dealing with Internet of Things Ecosystems co-located with International Conference on Advanced Visual Interfaces (AVI) 2022, Frascati, Italy, June 2022.
- Explanation Ontology: A Model of Explanations for User-Centered AI. In Jeff Z. Pan, Valentina Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The Semantic Web – ISWC 2020, Lecture Notes in Computer Science, pages 228–243, Cham, 2020. Springer International Publishing. ISBN 978-3-030-62466-8. doi:10.1007/978-3-030-62466-8_15.
- Enhancing User Behavior Sequence Modeling by Generative Tasks for Session Search. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 180–190, Atlanta GA USA, October 2022a. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557310. URL https://dl.acm.org/doi/10.1145/3511808.3557310.
- Joint Learning with both Classification and Regression Models for Age Prediction. Journal of Physics: Conference Series, 1168(3):032016, February 2019a. ISSN 1742-6596. doi:10.1088/1742-6596/1168/3/032016. URL https://dx.doi.org/10.1088/1742-6596/1168/3/032016.
- Monitoring and Recognizing Enterprise Public Opinion from High-Risk Users Based on User Portrait and Random Forest Algorithm. Axioms, 10(2), June 2021a. ISSN 2075-1680. doi:10.3390/axioms10020106. URL https://www.mdpi.com/2075-1680/10/2/106. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.
- Semi-supervised User Profiling with Heterogeneous Graph Attention Networks. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 2116–2122, Macao, China, August 2019b. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-4-1. doi:10.24963/ijcai.2019/293. URL https://www.ijcai.org/proceedings/2019/293.
- CatGCN: Graph Convolutional Networks with Categorical Node Features. IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2021b. ISSN 1558-2191. doi:10.1109/TKDE.2021.3133013.
- Global and Personalized Graphs for Heterogeneous Sequential Recommendation by Learning Behavior Transitions and User Intentions. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 268–277, Seattle WA USA, September 2022b. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3546761. URL https://dl.acm.org/doi/10.1145/3523227.3546761.
- Multi-Behavior Recommendation with Cascading Graph Convolution Networks. In Proceedings of the ACM Web Conference 2023, WWW ’23, pages 1181–1189, New York, NY, USA, April 2023. Association for Computing Machinery. ISBN 978-1-4503-9416-1. doi:10.1145/3543507.3583439. URL https://dl.acm.org/doi/10.1145/3543507.3583439.
- Using Decision Trees for Agent Modeling: Improving Prediction Performance. User Modeling and User-Adapted Interaction, 8(1):131–152, March 1998. ISSN 1573-1391. doi:10.1023/A:1008296930163. URL https://doi.org/10.1023/A:1008296930163.
- Dynamic Multi-Behavior Sequence Modeling for Next Item Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4):4199–4207, June 2023. ISSN 2374-3468. doi:10.1609/aaai.v37i4.25537. URL https://ojs.aaai.org/index.php/AAAI/article/view/25537.
- Mitigating Biases in Student Performance Prediction via Attention-Based Personalized Federated Learning. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 3033–3042, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557108. URL https://dl.acm.org/doi/10.1145/3511808.3557108.
- Context-Aware User Modeling Strategies for Journey Plan Recommendation. In Francesco Ricci, Kalina Bontcheva, Owen Conlan, and Séamus Lawless, editors, User Modeling, Adaptation and Personalization, Lecture Notes in Computer Science, pages 68–79, Cham, 2015. Springer International Publishing. ISBN 978-3-319-20267-9. doi:10.1007/978-3-319-20267-9_6.
- Elements of a Plan-Based Theory of Speech Acts. Cognitive Science, 3(3):177–212, 1979. ISSN 1551-6709. doi:10.1207/s15516709cog0303_1. URL https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0303_1.
- Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. In Proceedings of the 6th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems co-located with 13th ACM Conference on Recommender Systems(RecSys 2019), Copenhagen, Denmark, September 2019.
- Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages 191–198, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-4503-4035-9. doi:10.1145/2959100.2959190. URL https://dl.acm.org/doi/10.1145/2959100.2959190.
- Overview of the TREC-2005 enterprise track. In TREC, volume 5, pages 1–7, January 2005.
- Ayse Cufoglu. User Profiling - A Short Review. International Journal of Computer Applications, 108(3):1–9, December 2014. ISSN 09758887. doi:10.5120/18888-0179. URL http://research.ijcaonline.org/volume108/number3/pxc3900179.pdf.
- A Comparative Study of Selected Classification Accuracy in User Profiling. In 2008 Seventh International Conference on Machine Learning and Applications, pages 787–791, December 2008. doi:10.1109/ICMLA.2008.139. URL https://ieeexplore.ieee.org/abstract/document/4725067.
- Driver Profiling Using Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) Methods. IEEE Transactions on Intelligent Transportation Systems, 22(10):6572–6582, October 2021. ISSN 1558-0016. doi:10.1109/TITS.2020.2995722. URL https://ieeexplore.ieee.org/abstract/document/9110758?casa_token=fkFYuzEvG9AAAAAA:b5kKbGrpRUK8J4vLP3XbWQMLBIvfoHvosQb6ykSetomcyvULuGAPfgtX9U7Zs7Kcisbdxt3-t4Em.
- Towards Psychologically-Grounded Dynamic Preference Models. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 35–48, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3546778. URL https://dl.acm.org/doi/10.1145/3523227.3546778.
- Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, WSDM ’21, pages 680–688, New York, NY, USA, March 2021. Association for Computing Machinery. ISBN 978-1-4503-8297-7. doi:10.1145/3437963.3441752. URL https://dl.acm.org/doi/10.1145/3437963.3441752.
- Adaptive hypermedia: from systems to framework. ACM Computing Surveys, 31(4es):12, December 1999. ISSN 0360-0300, 1557-7341. doi:10.1145/345966.345996. URL https://dl.acm.org/doi/10.1145/345966.345996.
- Using Personalization to Improve XML Retrieval. IEEE Transactions on Knowledge and Data Engineering, 26(5):1280–1292, May 2014. ISSN 1041-4347. doi:10.1109/TKDE.2013.75. URL http://ieeexplore.ieee.org/document/6514872/.
- Multilingual ontology-based user profile enrichment. In MSW, pages 41–42, 2010.
- Who do you think I am? Interactive User Modelling with Item Metadata. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 640–643, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3551470. URL https://dl.acm.org/doi/10.1145/3523227.3551470.
- Improving Personalized Search with Dual-Feedback Network. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pages 210–218, Virtual Event AZ USA, February 2022a. ACM. ISBN 978-1-4503-9132-0. doi:10.1145/3488560.3498447. URL https://dl.acm.org/doi/10.1145/3488560.3498447.
- User Behavior Analysis Based on Stacked Autoencoder and Clustering in Complex Power Grid Environment. IEEE Transactions on Intelligent Transportation Systems, 23(12):25521–25535, December 2022b. ISSN 1558-0016. doi:10.1109/TITS.2021.3076607. URL https://ieeexplore.ieee.org/abstract/document/9430771. Conference Name: IEEE Transactions on Intelligent Transportation Systems.
- Personalized video recommendation based on cross-platform user modeling. In 2013 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6, July 2013. doi:10.1109/ICME.2013.6607513. URL https://ieeexplore.ieee.org/abstract/document/6607513?casa_token=6o5upYPGcmEAAAAA:LBu07wRx214QnmK_7zMR4-Jh79MA77Pv0U8wH96AgcittffEn1tzHfkU8WNyudM6QwNVNdta6w.
- Virginia Dignum. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer International Publishing, Cham, 2019. ISBN 978-3-030-30370-9 978-3-030-30371-6. doi:10.1007/978-3-030-30371-6. URL http://link.springer.com/10.1007/978-3-030-30371-6.
- Interpretable User Retention Modeling in Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 702–708, Singapore Singapore, September 2023. ACM. ISBN 9798400702419. doi:10.1145/3604915.3608818. URL https://dl.acm.org/doi/10.1145/3604915.3608818.
- A data-mining approach to discover patterns of window opening and closing behavior in offices. Building and Environment, 82:726–739, December 2014. ISSN 0360-1323. doi:10.1016/j.buildenv.2014.10.021. URL https://www.sciencedirect.com/science/article/pii/S0360132314003424.
- Profiling users via their reviews: an extended systematic mapping study. Software and Systems Modeling, 20(1):49–69, February 2021. ISSN 1619-1374. doi:10.1007/s10270-020-00790-w. URL https://doi.org/10.1007/s10270-020-00790-w.
- User Modeling on Demographic Attributes in Big Mobile Social Networks. ACM Transactions on Information Systems, 35(4):35:1–35:33, 2017. ISSN 1046-8188. doi:10.1145/3057278. URL https://dl.acm.org/doi/10.1145/3057278.
- Sequential User-based Recurrent Neural Network Recommendations. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 152–160, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 978-1-4503-4652-8. doi:10.1145/3109859.3109877. URL https://dl.acm.org/doi/10.1145/3109859.3109877.
- Folksonomy-based personalized search by hybrid user profiles in multiple levels. Neurocomputing, 204:142–152, September 2016. ISSN 0925-2312. doi:10.1016/j.neucom.2015.10.135. URL https://www.sciencedirect.com/science/article/pii/S0925231216301163.
- Adaptive User Modeling for Personalization of Web Contents. In Paul M. E. De Bra and Wolfgang Nejdl, editors, Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, pages 65–74, Berlin, Heidelberg, 2004. Springer. ISBN 978-3-540-27780-4. doi:10.1007/978-3-540-27780-4_10.
- Web mining for web personalization. ACM Transactions on Internet Technology, 3(1):1–27, February 2003. ISSN 1533-5399. doi:10.1145/643477.643478. URL https://dl.acm.org/doi/10.1145/643477.643478.
- A Survey of User Profiling: State-of-the-Art, Challenges, and Solutions. IEEE Access, 7:144907–144924, 2019. ISSN 2169-3536. doi:10.1109/ACCESS.2019.2944243.
- An improved modeling method for profile-based personalized search. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, NISS ’20, pages 1–6, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 978-1-4503-7634-1. doi:10.1145/3386723.3387874. URL https://dl.acm.org/doi/10.1145/3386723.3387874.
- User profile Ontology for the Personalization approach. International Journal of Computer Applications, 41:31–40, March 2012. doi:10.5120/5531-7577.
- A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pages 278–288, Republic and Canton of Geneva, CHE, 2015. International World Wide Web Conferences Steering Committee. ISBN 978-1-4503-3469-3. doi:10.1145/2736277.2741667. URL https://dl.acm.org/doi/10.1145/2736277.2741667.
- Finding Influential Users in Social Media Using Association Rule Learning. Entropy, 18(5):164, May 2016. ISSN 1099-4300. doi:10.3390/e18050164. URL https://www.mdpi.com/1099-4300/18/5/164. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute.
- Modeling Users’ Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pages 262–270, Virtual Event AZ USA, February 2022. ACM. ISBN 978-1-4503-9132-0. doi:10.1145/3488560.3498478. URL https://dl.acm.org/doi/10.1145/3488560.3498478.
- User Profiling Approaches, Modeling, and Personalization, October 2018. URL https://papers.ssrn.com/abstract=3389811.
- Harvesting Multiple Sources for User Profile Learning: a Big Data Study. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ICMR ’15, pages 235–242, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3274-3. doi:10.1145/2671188.2749381. URL https://dl.acm.org/doi/10.1145/2671188.2749381.
- Variational User Modeling with Slow and Fast Features. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pages 271–279, Virtual Event AZ USA, February 2022. ACM. ISBN 978-1-4503-9132-0. doi:10.1145/3488560.3498477. URL https://dl.acm.org/doi/10.1145/3488560.3498477.
- DeepSBD: A Deep Neural Network Model With Attention Mechanism for SocialBot Detection. IEEE Transactions on Information Forensics and Security, 16:4211–4223, 2021. ISSN 1556-6013, 1556-6021. doi:10.1109/TIFS.2021.3102498. URL https://ieeexplore.ieee.org/document/9505695/.
- The dimension of age and gender as user model demographic factors for automatic personalization in e-commerce sites. Computer Standards & Interfaces, 59:1–9, August 2018. ISSN 0920-5489. doi:10.1016/j.csi.2018.02.001. URL https://www.sciencedirect.com/science/article/pii/S0920548917303070.
- GUMS: A General User Modeling System. Proceedings of the workshop on Strategic computing natural language of the Human Language Technology Conference, pages 224–230, May 1986. URL https://ebiquity.umbc.edu/paper/abstract/id/325/GUMS-A-General-User-Modeling-System.
- A Review and Analysis of Commercial User Modeling Servers for Personalization on the World Wide Web. User Modeling and User-Adapted Interaction, 10(2):209–249, June 2000. ISSN 1573-1391. doi:10.1023/A:1026597308943. URL https://doi.org/10.1023/A:1026597308943.
- Modeling human behavior in user-adaptive systems: Recent advances using soft computing techniques. Expert Systems with Applications, 29(2):320–329, August 2005. ISSN 0957-4174. doi:10.1016/j.eswa.2005.04.005. URL https://www.sciencedirect.com/science/article/pii/S0957417405000588.
- Survey of Data Mining Approaches to User Modeling for Adaptive Hypermedia. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(6):734–749, November 2006. ISSN 1094-6977. doi:10.1109/TSMCC.2006.879391. URL http://ieeexplore.ieee.org/document/1715503/.
- Why people hate your app: making sense of user feedback in a mobile app store. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’13, pages 1276–1284, New York, NY, USA, 2013. Association for Computing Machinery. ISBN 978-1-4503-2174-7. doi:10.1145/2487575.2488202. URL https://dl.acm.org/doi/10.1145/2487575.2488202.
- Collaborative Dynamic Sparse Topic Regression with User Profile Evolution for Item Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), February 2017. ISSN 2374-3468. doi:10.1609/aaai.v31i1.10726. URL https://ojs.aaai.org/index.php/AAAI/article/view/10726.
- Personalisation in web computing and informatics: Theories, techniques, applications, and future research. Information Systems Frontiers, 12(5):607–629, November 2010. ISSN 1572-9419. doi:10.1007/s10796-009-9199-3. URL https://doi.org/10.1007/s10796-009-9199-3.
- Improving user profile with personality traits predicted from social media content. In Proceedings of the 7th ACM conference on Recommender systems, RecSys ’13, pages 355–358, New York, NY, USA, 2013. Association for Computing Machinery. ISBN 978-1-4503-2409-0. doi:10.1145/2507157.2507219. URL https://dl.acm.org/doi/10.1145/2507157.2507219.
- Joint Mind Modeling for Explanation Generation in Complex Human-Robot Collaborative Tasks. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pages 1119–1126, August 2020. doi:10.1109/RO-MAN47096.2020.9223595. URL https://ieeexplore.ieee.org/document/9223595. ISSN: 1944-9437.
- User Profiles for Personalized Information Access. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, pages 54–89. Springer, Berlin, Heidelberg, 2007. ISBN 978-3-540-72079-9. doi:10.1007/978-3-540-72079-9_2. URL https://doi.org/10.1007/978-3-540-72079-9_2.
- Personalizing Search Results Using Hierarchical RNN with Query-aware Attention. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 347–356, Torino Italy, October 2018. ACM. ISBN 978-1-4503-6014-2. doi:10.1145/3269206.3271728. URL https://dl.acm.org/doi/10.1145/3269206.3271728.
- The rise of user profiling in social media: review, challenges and future direction. Social Network Analysis and Mining, 13(1):137, October 2023. ISSN 1869-5469. doi:10.1007/s13278-023-01146-0. URL https://doi.org/10.1007/s13278-023-01146-0.
- User profiling in personal information agents: a survey. The Knowledge Engineering Review, 20(4):329–361, December 2005. ISSN 1469-8005, 0269-8889. doi:10.1017/S0269888906000397. URL https://www.cambridge.org/core/journals/knowledge-engineering-review/article/user-profiling-in-personal-information-agents-a-survey/383527ACC2A6C40746AD7FE48E7E8B1D.
- Learning Users’ Preferred Visual Styles in an Image Marketplace. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 466–468, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3547382. URL https://dl.acm.org/doi/10.1145/3523227.3547382.
- When Sentiment Analysis Meets Social Network: A Holistic User Behavior Modeling in Opinionated Data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1455–1464, London United Kingdom, July 2018. ACM. ISBN 978-1-4503-5552-0. doi:10.1145/3219819.3220120. URL https://dl.acm.org/doi/10.1145/3219819.3220120.
- JNET: Learning User Representations via Joint Network Embedding and Topic Embedding. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20, pages 205–213, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 978-1-4503-6822-3. doi:10.1145/3336191.3371770. URL https://dl.acm.org/doi/10.1145/3336191.3371770.
- KnowMe and ShareMe: understanding automatically discovered personality traits from social media and user sharing preferences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages 955–964, New York, NY, USA, April 2014. Association for Computing Machinery. ISBN 978-1-4503-2473-1. doi:10.1145/2556288.2557398. URL https://dl.acm.org/doi/10.1145/2556288.2557398.
- Emotional Text Mining: Customer profiling in brand management. International Journal of Information Management, 51:101934, April 2020. ISSN 0268-4012. doi:10.1016/j.ijinfomgt.2019.04.007. URL https://www.sciencedirect.com/science/article/pii/S0268401218313598.
- Partner Matters! An Empirical Study on Fusing Personas for Personalized Response Selection in Retrieval-Based Chatbots. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 565–574, Virtual Event Canada, July 2021a. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462858. URL https://dl.acm.org/doi/10.1145/3404835.3462858.
- Exploiting Behavioral Consistence for Universal User Representation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4063–4071, May 2021b. ISSN 2374-3468, 2159-5399. doi:10.1609/aaai.v35i5.16527. URL https://ojs.aaai.org/index.php/AAAI/article/view/16527.
- Hierarchical User Profiling for E-commerce Recommender Systems. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20, pages 223–231, New York, NY, USA, January 2020. Association for Computing Machinery. ISBN 978-1-4503-6822-3. doi:10.1145/3336191.3371827. URL https://dl.acm.org/doi/10.1145/3336191.3371827.
- Self-Supervised Learning on Users’ Spontaneous Behaviors for Multi-Scenario Ranking in E-commerce. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3828–3837, Virtual Event Queensland Australia, October 2021c. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3481953. URL https://dl.acm.org/doi/10.1145/3459637.3481953.
- Personalized Fashion Compatibility Modeling via Metapath-guided Heterogeneous Graph Learning. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 482–491, Madrid Spain, July 2022. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3532038. URL https://dl.acm.org/doi/10.1145/3477495.3532038.
- Explaining User Models with Different Levels of Detail for Transparent Recommendation: A User Study. In Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’22 Adjunct, pages 175–183, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-9232-7. doi:10.1145/3511047.3537685. URL https://dl.acm.org/doi/10.1145/3511047.3537685.
- From User Models to the Cyber-I Model: Approaches, Progresses and Issues. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), pages 33–40, Athens, August 2018a. IEEE. ISBN 978-1-5386-7518-2. doi:10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00021. URL https://ieeexplore.ieee.org/document/8511864/.
- Multi-modal Preference Modeling for Product Search. In Proceedings of the 26th ACM international conference on Multimedia, MM ’18, pages 1865–1873, New York, NY, USA, 2018b. Association for Computing Machinery. ISBN 978-1-4503-5665-7. doi:10.1145/3240508.3240541. URL https://dl.acm.org/doi/10.1145/3240508.3240541.
- Attentive Long Short-Term Preference Modeling for Personalized Product Search. ACM Transactions on Information Systems, 37(2):19:1–19:27, 2019. ISSN 1046-8188. doi:10.1145/3295822. URL https://dl.acm.org/doi/10.1145/3295822.
- Action prediction models for recommender systems based on collaborative filtering and sequence mining hybridization. In Proceedings of the Symposium on Applied Computing, SAC ’17, pages 1655–1661, New York, NY, USA, April 2017. Association for Computing Machinery. ISBN 978-1-4503-4486-9. doi:10.1145/3019612.3019759. URL https://dl.acm.org/doi/10.1145/3019612.3019759.
- E. Hadoux and A. Hunter. Learning and Updating User Models for Subpopulations in Persuasive Argumentation Using Beta Distribution, July 2018. URL https://dl.acm.org/citation.cfm?id=3237865.
- Student Profile Modeling Using Boosting Algorithms. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 17(5):1–13, September 2022. ISSN 1548-1093. doi:10.4018/IJWLTT.20220901.oa4. URL https://www.igi-global.com/article/student-profile-modeling-using-boosting-algorithms/www.igi-global.com/article/student-profile-modeling-using-boosting-algorithms/284084.
- Multi-Aggregator Time-Warping Heterogeneous Graph Neural Network for Personalized Micro-Video Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 676–685, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557403. URL https://dl.acm.org/doi/10.1145/3511808.3557403.
- Bayesian latent variable models for collaborative item rating prediction. In Proceedings of the 20th ACM international conference on Information and knowledge management, CIKM ’11, pages 699–708, New York, NY, USA, 2011. Association for Computing Machinery. ISBN 978-1-4503-0717-8. doi:10.1145/2063576.2063680. URL https://dl.acm.org/doi/10.1145/2063576.2063680.
- Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5540–5552, Online, July 2020. Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.491. URL https://aclanthology.org/2020.acl-main.491.
- Learning to Trust: Understanding Editorial Authority and Trust in Recommender Systems for Education. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pages 24–32, Utrecht Netherlands, June 2021. ACM. ISBN 978-1-4503-8366-0. doi:10.1145/3450613.3456811. URL https://dl.acm.org/doi/10.1145/3450613.3456811.
- A Survey on User Behavior Modeling in Recommender Systems, February 2023. URL http://arxiv.org/abs/2302.11087.
- Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter. In 2020 International Conference on Data Mining Workshops (ICDMW), pages 480–487, November 2020. doi:10.1109/ICDMW51313.2020.00071.
- Yoshinori Hijikata. Implicit user profiling for on demand relevance feedback. In Proceedings of the 9th international conference on Intelligent user interfaces, IUI ’04, pages 198–205, New York, NY, USA, January 2004. Association for Computing Machinery. ISBN 978-1-58113-815-3. doi:10.1145/964442.964480. URL https://dl.acm.org/doi/10.1145/964442.964480.
- Now it’s your web. Business Week, pages 68–74, 1998.
- The lumière project: Bayesian user modeling for inferring the goals and needs of software users. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, UAI’98, pages 256–265, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 978-1-55860-555-8.
- A User Profile Modeling Method Based on Word2Vec. In 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), pages 410–414, July 2017. doi:10.1109/QRS-C.2017.74. URL https://ieeexplore.ieee.org/abstract/document/8004351?casa_token=LBqpMSiajuYAAAAA:eDejrNq_k8xXgSujFmX9zOZzFk3S3O2oNpGrWOqu0IC-Zr3eXts_D4dtTZwxbYrQETOuiip6wQ.
- Graph neural news recommendation with long-term and short-term interest modeling. Information Processing & Management, 57(2):102142, March 2020. ISSN 0306-4573. doi:10.1016/j.ipm.2019.102142. URL https://www.sciencedirect.com/science/article/pii/S0306457319307800.
- Explainable Interaction-driven User Modeling over Knowledge Graph for Sequential Recommendation. In Proceedings of the 27th ACM International Conference on Multimedia, MM ’19, pages 548–556, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 978-1-4503-6889-6. doi:10.1145/3343031.3350893. URL https://dl.acm.org/doi/10.1145/3343031.3350893.
- Profiling Hate Speech Spreaders on Twitter: Transformers and mixed pooling. In Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, volume 2936, pages 1772–1789, Bucharest, Romania, 2021. CEUR Workshop Proceedings.
- Modeling, simulation, and trade-off analysis for multirobot, multioperator surveillance. Systems Engineering, 26(5):627–640, 2023. ISSN 1520-6858. doi:10.1002/sys.21685. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21685.
- Differentiable user models. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 798–808. PMLR, July 2023. URL https://proceedings.mlr.press/v216/hamalainen23a.html.
- User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protection. Computer, 51(8):56–59, August 2018. ISSN 1558-0814. doi:10.1109/MC.2018.3191268. URL https://ieeexplore.ieee.org/abstract/document/8436400.
- Application of Deep Recurrent Neural Networks for Prediction of User Behavior in Tor Networks. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), pages 238–243, March 2017. doi:10.1109/WAINA.2017.63. URL https://ieeexplore.ieee.org/abstract/document/7929684?casa_token=9Iq9cw7U8csAAAAA:Ie_jgGdZHnR-3WUz8eDK3QyRdEH0c9XmrAp3O7-CCt_ejaP8mTWHBfu0Pcab3ebzftpuZVa-wRVE.
- Recognition of personality traits from human spoken conversations. In Twelfth annual conference of the international speech communication association, 2011.
- Cross-Modal Repair: Gaze and Speech Interaction for List Advancement. In Proceedings of the 4th Conference on Conversational User Interfaces, CUI ’22, pages 1–11, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-9739-1. doi:10.1145/3543829.3543833. URL https://dl.acm.org/doi/10.1145/3543829.3543833.
- A Review of Content-Based and Context-Based Recommendation Systems. International Journal of Emerging Technologies in Learning (iJET), 16(03):274–306, February 2021. ISSN 1863-0383. doi:10.3991/ijet.v16i03.18851. URL https://online-journals.org/index.php/i-jet/article/view/18851.
- User preferences profiling based on user behaviors on Facebook page categories. In 2017 9th International Conference on Knowledge and Smart Technology (KST), pages 248–253, February 2017. doi:10.1109/KST.2017.7886077. URL https://ieeexplore.ieee.org/abstract/document/7886077?casa_token=RN8VjN1AFygAAAAA:F6a0e3SMgYc_k20YKeSoF1bskeADnQXWx3XBiT-3nbHbmqaEA93hoMyZwJX_XVpb3-KLLcAgBA&signout=success.
- Multi-behavior Recommendation with Graph Convolutional Networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20, pages 659–668, Virtual Event China, 2020. Association for Computing Machinery. ISBN 978-1-4503-8016-4. doi:10.1145/3397271.3401072. URL https://dl.acm.org/doi/10.1145/3397271.3401072.
- Cong Jin. MOOC student dropout prediction model based on learning behavior features and parameter optimization. Interactive Learning Environments, 31(2):714–732, February 2023. ISSN 1049-4820. doi:10.1080/10494820.2020.1802300. URL https://doi.org/10.1080/10494820.2020.1802300.
- Understanding user behavior in online social networks: a survey. IEEE Communications Magazine, 51(9):144–150, September 2013. ISSN 1558-1896. doi:10.1109/MCOM.2013.6588663. URL https://ieeexplore.ieee.org/abstract/document/6588663?casa_token=BLPT_wxLkJYAAAAA:EbmGps059bb8icyPPhAVSFS4c4AZROZ9G3JIoJzWNppvqeFhe_5rRzJpbmKk1AcuGOY8v-yl4g.
- A computational model for the emergence of turn-taking behaviors in user-agent interactions. Journal on Multimodal User Interfaces, 12(3):199–223, September 2018. ISSN 1783-8738. doi:10.1007/s12193-018-0265-3. URL https://doi.org/10.1007/s12193-018-0265-3.
- User Profiling Trends, Techniques and Applications, March 2015. URL http://arxiv.org/abs/1503.07474.
- A Convolutional Neural Network Approach for Modeling Semantic Trajectories and Predicting Future Locations. In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial Neural Networks and Machine Learning – ICANN 2018, Lecture Notes in Computer Science, pages 61–72, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01418-6. doi:10.1007/978-3-030-01418-6_7.
- User profile acquisition: A comprehensive framework to support personal information agents. In 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pages 1–6, November 2017. doi:10.1109/LA-CCI.2017.8285719. URL https://ieeexplore.ieee.org/document/8285719.
- AuthCom: Authorship verification and compromised account detection in online social networks using AHP-TOPSIS embedded profiling based technique. Expert Systems with Applications, 113:397–414, December 2018. ISSN 0957-4174. doi:10.1016/j.eswa.2018.07.011. URL https://www.sciencedirect.com/science/article/pii/S0957417418304275.
- Methods for User Profiling across Social Networks. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 1572–1579, Xiamen, China, December 2019. IEEE. ISBN 978-1-72814-328-6. doi:10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00231. URL https://ieeexplore.ieee.org/document/9047322/.
- Judy Kay. The um toolkit for reusable, long term user models. User Modeling and User-Adapted Interaction, 4(3):149–196, 1995.
- Personis: A Server for User Models. In Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Paul De Bra, Peter Brusilovsky, and Ricardo Conejo, editors, Adaptive Hypermedia and Adaptive Web-Based Systems, volume 2347, pages 203–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-43737-6 978-3-540-47952-9. URL http://link.springer.com/10.1007/3-540-47952-X_22.
- I-know my users: user-centric profiling based on the perceptual preference questionnaire (PPQ). In Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW ’12, pages 1–4, New York, NY, USA, September 2012. Association for Computing Machinery. ISBN 978-1-4503-1242-4. doi:10.1145/2362456.2362493. URL https://dl.acm.org/doi/10.1145/2362456.2362493.
- Shaping how advertisers see me: user views on implicit and explicit profile capture. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08, pages 3363–3368, New York, NY, USA, April 2008. Association for Computing Machinery. ISBN 978-1-60558-012-8. doi:10.1145/1358628.1358858. URL https://dl.acm.org/doi/10.1145/1358628.1358858.
- Amortised Experimental Design and Parameter Estimation for User Models of Pointing. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, pages 1–17, New York, NY, USA, April 2023. Association for Computing Machinery. ISBN 978-1-4503-9421-5. doi:10.1145/3544548.3581483. URL https://dl.acm.org/doi/10.1145/3544548.3581483.
- Collaborative user modeling with user-generated tags for social recommender systems. Expert Systems with Applications, 38(7):8488–8496, July 2011. ISSN 09574174. doi:10.1016/j.eswa.2011.01.048. URL https://linkinghub.elsevier.com/retrieve/pii/S0957417411000686.
- Personality and its effects on learning performance: Design guidelines for an adaptive e-learning system based on a user model. International Journal of Industrial Ergonomics, 43(5):450–461, September 2013. ISSN 0169-8141. doi:10.1016/j.ergon.2013.03.001. URL https://www.sciencedirect.com/science/article/pii/S0169814113000334.
- Task Relation-aware Continual User Representation Learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pages 1107–1119, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:10.1145/3580305.3599516. URL https://dl.acm.org/doi/10.1145/3580305.3599516.
- Alfred Kobsa. Modeling the user’s conceptual knowledge in BGP-MS, a user modeling shell system1. Computational Intelligence, 6(4):193–208, 1990. ISSN 1467-8640. doi:10.1111/j.1467-8640.1990.tb00295.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.1990.tb00295.x.
- Alfred Kobsa. Generic User Modeling Systems. User Modeling and User-Adapted Interaction, 11(1):49–63, March 2001. ISSN 1573-1391. doi:10.1023/A:1011187500863. URL https://doi.org/10.1023/A:1011187500863.
- An LDAP-based User Modeling Server and its Evaluation. User Modeling and User-Adapted Interaction, 16(2):129–169, May 2006. ISSN 0924-1868, 1573-1391. doi:10.1007/s11257-006-9006-5. URL https://link.springer.com/10.1007/s11257-006-9006-5.
- The user modeling shell system BGP-MS. User Modeling and User-Adapted Interaction, 4(2):59–106, June 1994. ISSN 1573-1391. doi:10.1007/BF01099428. URL https://doi.org/10.1007/BF01099428.
- Privacy through pseudonymity in user-adaptive systems. ACM Transactions on Internet Technology, 3(2):149–183, 2003. ISSN 1533-5399. doi:10.1145/767193.767196. URL https://dl.acm.org/doi/10.1145/767193.767196.
- Personalised hypermedia presentation techniques for improving online customer relationships. The Knowledge Engineering Review, 16(2):111–155, March 2001. ISSN 1469-8005, 0269-8889. doi:10.1017/S0269888901000108. URL https://www.cambridge.org/core/journals/knowledge-engineering-review/article/personalised-hypermedia-presentation-techniques-for-improving-online-customer-relationships/FBFF2DE0C1AA93E2796F7B9809FE01D2.
- Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1):101–123, April 2012. ISSN 1573-1391. doi:10.1007/s11257-011-9112-x. URL https://doi.org/10.1007/s11257-011-9112-x.
- GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3):77–87, March 1997. ISSN 0001-0782, 1557-7317. doi:10.1145/245108.245126. URL https://dl.acm.org/doi/10.1145/245108.245126.
- Soliciting User Preferences in Conversational Recommender Systems via Usage-related Questions. In Fifteenth ACM Conference on Recommender Systems, pages 724–729, Amsterdam Netherlands, September 2021. ACM. ISBN 978-1-4503-8458-2. doi:10.1145/3460231.3478861. URL https://dl.acm.org/doi/10.1145/3460231.3478861.
- Understanding Job Seeker Funnel for Search and Discovery Personalization. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3888–3897, Virtual Event Queensland Australia, October 2021. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3481959. URL https://dl.acm.org/doi/10.1145/3459637.3481959.
- Dynamic and temporal user profiling for personalized recommenders using heterogeneous data sources. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1–7, July 2017. doi:10.1109/ICCCNT.2017.8203963. URL https://ieeexplore.ieee.org/document/8203963.
- Bruce Krulwich. LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data. AI Magazine, 18(2):37–37, June 1997. ISSN 2371-9621. doi:10.1609/aimag.v18i2.1292. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1292.
- Challenges and Solutions of Ubiquitous User Modeling. In Antonio Krüger and Tsvi Kuflik, editors, Ubiquitous Display Environments, Cognitive Technologies, pages 7–30. Springer, Berlin, Heidelberg, 2012. ISBN 978-3-642-27663-7. doi:10.1007/978-3-642-27663-7_2. URL https://doi.org/10.1007/978-3-642-27663-7_2.
- User Profiling Based Recommendation System for E-Learning. In 2019 IEEE 16th India Council International Conference (INDICON), pages 1–4, December 2019. doi:10.1109/INDICON47234.2019.9028982. URL https://ieeexplore.ieee.org/document/9028982.
- User profiling via application usage pattern on digital devices for digital forensics. Expert Systems with Applications, 168:114488, April 2021. ISSN 09574174. doi:10.1016/j.eswa.2020.114488. URL https://linkinghub.elsevier.com/retrieve/pii/S0957417420311349.
- Multicriteria User Modeling in Recommender Systems. IEEE Intelligent Systems, 26(2):64–76, March 2011. ISSN 1541-1672. doi:10.1109/MIS.2011.33. URL http://ieeexplore.ieee.org/document/5751215/.
- Pat Langley. User Modeling in Adaptive Interfaces. In Proceedings of the Seventh International Conference on User Modeling, 1999. doi:10.1007/978-3-7091-2490-1_48.
- A Survey on User Profiling Model for Anomaly Detection in Cyberspace. Journal of Cyber Security and Mobility, pages 75–112, 2019. ISSN 2245-4578. doi:10.13052/2245-1439.814. URL https://journals.riverpublishers.com/index.php/JCSANDM.
- A Three-Tier Profiling Framework for Adaptive e-Learning. In Marc Spaniol, Qing Li, Ralf Klamma, and Rynson W. H. Lau, editors, Advances in Web Based Learning – ICWL 2009, Lecture Notes in Computer Science, pages 235–244, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-03426-8. doi:10.1007/978-3-642-03426-8_30.
- A Hierarchical User Behavior Modeling Framework for Cross-Domain Click-Through Rate Prediction. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 4163–4167, Atlanta GA USA, October 2022a. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557531. URL https://dl.acm.org/doi/10.1145/3511808.3557531.
- Intent-aware Ranking Ensemble for Personalized Recommendation, April 2023a. URL http://arxiv.org/abs/2304.07450.
- Weakly Supervised User Profile Extraction from Twitter. In Kristina Toutanova and Hua Wu, editors, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 165–174, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:10.3115/v1/P14-1016. URL https://aclanthology.org/P14-1016.
- Dynamic Adaptation Strategies for Long-Term and Short-Term User Profile to Personalize Search. In Guozhu Dong, Xuemin Lin, Wei Wang, Yun Yang, and Jeffrey Xu Yu, editors, Advances in Data and Web Management, Lecture Notes in Computer Science, pages 228–240, Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-72524-4. doi:10.1007/978-3-540-72524-4_26.
- A Novel RNN Model with Enhanced Behavior Semantic for Network User Profile. In 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD), pages 190–193, November 2022b. doi:10.1109/CBD58033.2022.00041. URL https://ieeexplore.ieee.org/document/10024536.
- A Survey on Representation Learning for User Modeling. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pages 4997–5003, Yokohama, Japan, July 2020. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-6-5. doi:10.24963/ijcai.2020/695. URL https://www.ijcai.org/proceedings/2020/695.
- User-Centric Conversational Recommendation with Multi-Aspect User Modeling. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 223–233, Madrid Spain, July 2022c. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3532074. URL https://dl.acm.org/doi/10.1145/3477495.3532074.
- STAN: Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation, June 2023b. URL http://arxiv.org/abs/2306.12232.
- Formal language models for finding groups of experts. Information Processing & Management, 52(4):529–549, July 2016. ISSN 03064573. doi:10.1016/j.ipm.2015.11.005. URL https://linkinghub.elsevier.com/retrieve/pii/S0306457315001405.
- CROSS: Cross-platform Recommendation for Social E-Commerce. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19, pages 515–524, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 978-1-4503-6172-9. doi:10.1145/3331184.3331191. URL https://dl.acm.org/doi/10.1145/3331184.3331191.
- Triple Structural Information Modelling for Accurate, Explainable and Interactive Recommendation, April 2023a. URL http://arxiv.org/abs/2304.11528.
- GNN-based long and short term preference modeling for next-location prediction. Information Sciences, 629:1–14, June 2023b. ISSN 00200255. doi:10.1016/j.ins.2023.01.131. URL https://linkinghub.elsevier.com/retrieve/pii/S0020025523001433.
- User Modeling for Recommendation in Blogspace. In 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, pages 79–82, November 2007. doi:10.1109/WI-IATW.2007.23. URL https://ieeexplore.ieee.org/abstract/document/4427544?casa_token=CSJ-JvzE2IcAAAAA:fnGYlRgTPH2l-2A6BUyuYwmYlaUrV1OCcJjtJrNrJzjMqq8aQ6xSRuSqfSJR9T-agEhn_mOPhw.
- Federated User Modeling from Hierarchical Information. ACM Transactions on Information Systems, 41(2):46:1–46:33, April 2023c. ISSN 1046-8188. doi:10.1145/3560485. URL https://dl.acm.org/doi/10.1145/3560485.
- Xin Liu. Modeling users’ dynamic preference for personalized recommendation. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages 1785–1791, Buenos Aires, Argentina, 2015. AAAI Press. ISBN 978-1-57735-738-4.
- Efficient User Profiling Based Intelligent Travel Recommender System for Individual and Group of Users. Mobile Networks and Applications, 24(3):1018–1033, June 2019. ISSN 1572-8153. doi:10.1007/s11036-018-1059-2. URL https://doi.org/10.1007/s11036-018-1059-2.
- Standing in Your Shoes: External Assessments for Personalized Recommender Systems. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1523–1533, Virtual Event Canada, July 2021. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462916. URL https://dl.acm.org/doi/10.1145/3404835.3462916.
- Modeling User Search Tasks with a Language-Agnostic Unsupervised Approach. In Djoerd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and Fabrizio Sebastiani, editors, Advances in Information Retrieval, Lecture Notes in Computer Science, pages 405–418, Cham, 2021. Springer International Publishing. ISBN 978-3-030-72113-8. doi:10.1007/978-3-030-72113-8_27.
- Personalized Federated Recommendation via Joint Representation Learning, User Clustering, and Model Adaptation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 4289–4293, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557668. URL https://dl.acm.org/doi/10.1145/3511808.3557668.
- A Hybrid User Profile Model for Personalized Recommender System with Linked Open Data. In 2014 Enterprise Systems Conference, pages 243–248, August 2014. doi:10.1109/ES.2014.16. URL https://ieeexplore.ieee.org/abstract/document/6997053?casa_token=_xtD5qA_nO4AAAAA:9HSZ6x8CnenAC0zBxTXKmvWHPlPgnlSiWSC8p0DWTZFEXfAcDpMYcJE3A6MB2plDw4FvITPtKA.
- NEST: Simulating Pandemic-like Events for Collaborative Filtering by Modeling User Needs Evolution. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 1430–1440, Atlanta GA USA, October 2022a. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557407. URL https://dl.acm.org/doi/10.1145/3511808.3557407.
- CAEN: A Hierarchically Attentive Evolution Network for Item-Attribute-Change-Aware Recommendation in the Growing E-commerce Environment. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 278–287, Seattle WA USA, September 2022b. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3546773. URL https://dl.acm.org/doi/10.1145/3523227.3546773.
- The Model May Fit You: User-Generalized Cross-Modal Retrieval. IEEE Transactions on Multimedia, 24:2998–3012, 2022c. ISSN 1941-0077. doi:10.1109/TMM.2021.3091888. URL https://ieeexplore.ieee.org/document/9465686.
- PSTIE: Time Information Enhanced Personalized Search. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 1075–1084, Virtual Event Ireland, October 2020. ACM. ISBN 978-1-4503-6859-9. doi:10.1145/3340531.3411877. URL https://dl.acm.org/doi/10.1145/3340531.3411877.
- One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 555–564, Virtual Event Canada, July 2021. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462828. URL https://dl.acm.org/doi/10.1145/3404835.3462828.
- Analytic Versus Computational Cognitive Models: Agent-Based Modeling as a Tool in Cognitive Sciences. Current Directions in Psychological Science, 28(3):299–305, June 2019. ISSN 0963-7214. doi:10.1177/0963721419834547. URL https://doi.org/10.1177/0963721419834547.
- Towards personality-based user adaptation: psychologically informed stylistic language generation. User Modeling and User-Adapted Interaction, 20(3):227–278, August 2010. ISSN 0924-1868, 1573-1391. doi:10.1007/s11257-010-9076-2. URL http://link.springer.com/10.1007/s11257-010-9076-2.
- Generating Personalized Recipes from Historical User Preferences, August 2019. URL http://arxiv.org/abs/1909.00105.
- E. Malinowski and E. Zimányi. Hierarchies in a multidimensional model: From conceptual modeling to logical representation. Data & Knowledge Engineering, 59(2):348–377, November 2006. ISSN 0169-023X. doi:10.1016/j.datak.2005.08.003. URL https://www.sciencedirect.com/science/article/pii/S0169023X0500145X.
- What’s on TV tonight? An efficient and effective personalized recommender system of TV programs. IEEE Transactions on Consumer Electronics, 55(1):286–294, February 2009. ISSN 1558-4127. doi:10.1109/TCE.2009.4814447. URL https://ieeexplore.ieee.org/abstract/document/4814447?casa_token=_cS7kDsAFe0AAAAA:fpgwqYT9CfzLb2s-GpOxdIUKIrERDJh8sxUJYd8NdBwvyU2eEQNfcuPiD9cPyI_QkCtJUsV8aw.
- Judith Masthoff. Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers. In Personalized Digital Television: Targeting Programs to individual Viewers, Human-Computer Interaction Series, pages 93–141. Springer Netherlands, Dordrecht, 2004. ISBN 978-1-4020-2164-0. URL https://doi.org/10.1007/1-4020-2164-X_5.
- Judith Masthoff. Group Recommender Systems: Combining Individual Models. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook, pages 677–702. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi:10.1007/978-0-387-85820-3_21. URL https://doi.org/10.1007/978-0-387-85820-3_21.
- An Introduction to the Five-Factor Model and Its Applications. Journal of Personality, 60(2):175–215, 1992. ISSN 1467-6494. doi:10.1111/j.1467-6494.1992.tb00970.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6494.1992.tb00970.x.
- A taxonomy for user models in adaptive systems: special considerations for learning environments. The Knowledge Engineering Review, 31(2):124–141, March 2016. ISSN 0269-8889, 1469-8005. doi:10.1017/S0269888916000035. URL https://www.cambridge.org/core/journals/knowledge-engineering-review/article/taxonomy-for-user-models-in-adaptive-systems-special-considerations-for-learning-environments/B46A2FF2E88ACEC48BFD5D0A1CF7E4BB.
- Emotion Recognition Using KNN Classification for User Modeling and Sharing of Affect States. In Tingwen Huang, Zhigang Zeng, Chuandong Li, and Chi Sing Leung, editors, Neural Information Processing, Lecture Notes in Computer Science, pages 234–242, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-34475-6. doi:10.1007/978-3-642-34475-6_29.
- Ontologically-Enriched Unified User Modeling for Cross-System Personalization. In Liliana Ardissono, Paul Brna, and Antonija Mitrovic, editors, User Modeling 2005, Lecture Notes in Computer Science, pages 119–123, Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-31878-1. doi:10.1007/11527886_16.
- Convolutional Neural Network and Data Augmentation for Behavioral-Based Biometric User Identification. In Milan Tuba, Shyam Akashe, and Amit Joshi, editors, ICT Systems and Sustainability, Advances in Intelligent Systems and Computing, pages 753–761, Singapore, 2021. Springer. ISBN 9789811582899. doi:10.1007/978-981-15-8289-9_72.
- The impact of cross-platform development approaches for mobile applications from the user’s perspective. In Proceedings of the International Workshop on App Market Analytics, WAMA 2016, pages 43–49, New York, NY, USA, November 2016. Association for Computing Machinery. ISBN 978-1-4503-4398-5. doi:10.1145/2993259.2993268. URL https://dl.acm.org/doi/10.1145/2993259.2993268.
- A user profile modelling using social annotations: a survey. In Proceedings of the 21st International Conference on World Wide Web, WWW ’12 Companion, pages 969–976, New York, NY, USA, April 2012. Association for Computing Machinery. ISBN 978-1-4503-1230-1. doi:10.1145/2187980.2188230. URL https://dl.acm.org/doi/10.1145/2187980.2188230.
- Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1):54–88, 2004. ISSN 1046-8188. doi:10.1145/963770.963773. URL https://dl.acm.org/doi/10.1145/963770.963773.
- Interpretable Knowledge Tracing: Simple and Efficient Student Modeling with Causal Relations. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11):12810–12818, June 2022. ISSN 2374-3468. doi:10.1609/aaai.v36i11.21560. URL https://ojs.aaai.org/index.php/AAAI/article/view/21560.
- Bamshad Mobasher. Data Mining for Web Personalization. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, pages 90–135. Springer, Berlin, Heidelberg, 2007. ISBN 978-3-540-72079-9. doi:10.1007/978-3-540-72079-9_3. URL https://doi.org/10.1007/978-3-540-72079-9_3.
- Fake News Detection on Social Media using Geometric Deep Learning, February 2019. URL https://arxiv.org/abs/1902.06673v1.
- Progression Trajectory-Based Student Modeling for Novice Block-Based Programming. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pages 189–200, Utrecht Netherlands, June 2021. ACM. ISBN 978-1-4503-8366-0. doi:10.1145/3450613.3456833. URL https://dl.acm.org/doi/10.1145/3450613.3456833.
- A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18, pages 97–101, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 978-1-4503-5784-5. doi:10.1145/3213586.3226218. URL https://dl.acm.org/doi/10.1145/3213586.3226218.
- Towards Queryable User Profiles: Introducing Conversational Agents in a Platform for Holistic User Modeling. In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’20 Adjunct, pages 213–218, New York, NY, USA, 2020a. Association for Computing Machinery. ISBN 978-1-4503-7950-2. doi:10.1145/3386392.3399298. URL https://dl.acm.org/doi/10.1145/3386392.3399298.
- Myrror: a platform for holistic user modeling. User Modeling and User-Adapted Interaction, 30(3):477–511, July 2020b. ISSN 1573-1391. doi:10.1007/s11257-020-09272-6. URL https://doi.org/10.1007/s11257-020-09272-6.
- Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Models. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’20, pages 333–337, New York, NY, USA, 2020c. Association for Computing Machinery. ISBN 978-1-4503-6861-2. doi:10.1145/3340631.3394880. URL https://dl.acm.org/doi/10.1145/3340631.3394880.
- MyrrorBot: A Digital Assistant Based on Holistic User Models for Personalized Access to Online Services. ACM Transactions on Information Systems, 39(4):46:1–46:34, 2021. ISSN 1046-8188. doi:10.1145/3447679. URL https://dl.acm.org/doi/10.1145/3447679.
- University Recommender System based on Student Profile using Feature Weighted Algorithm and KNN. In 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pages 479–484, April 2022. doi:10.1109/ICSCDS53736.2022.9760852. URL https://ieeexplore.ieee.org/abstract/document/9760852?casa_token=8EDAS89mh7IAAAAA:2ewEa1q30-4U7jT_pGfCM9o3EBfWRT4tfJ6eq4BqMzPBztfFJkZxeaxLv74SlvJx1r8T0Or76-HZ.
- Building and applying a concept hierarchy representation of a user profile. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, SIGIR ’03, pages 198–204, New York, NY, USA, 2003. Association for Computing Machinery. ISBN 978-1-58113-646-3. doi:10.1145/860435.860473. URL https://dl.acm.org/doi/10.1145/860435.860473.
- A Systematic Review of User Mental Models on Applications Sustainability. International Journal of Sustainable Construction Engineering and Technology, 14(3):376–389, September 2023. ISSN 2600-7959. URL https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/15283.
- Recommending News Based on Hybrid User Profile, Popularity, Trends, and Location. In 2016 International Conference on Collaboration Technologies and Systems (CTS), pages 204–211, October 2016. doi:10.1109/CTS.2016.0050. URL https://ieeexplore.ieee.org/abstract/document/7870988.
- Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 596–605, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 978-1-4503-5552-0. doi:10.1145/3219819.3219828. URL https://dl.acm.org/doi/10.1145/3219819.3219828.
- Sir Nigel Shadbolt. Architectures for Autonomy: Towards an Equitable Web of Data in the Age of AI. In Proceedings of The Web Conference 2020, WWW ’20, pages 3141–3142, New York, NY, USA, April 2020. Association for Computing Machinery. ISBN 978-1-4503-7023-3. doi:10.1145/3366423.3382668. URL https://doi.org/10.1145/3366423.3382668.
- Learning Logical Reasoning Using an Intelligent Tutoring System: A Hybrid Approach to Student Modeling. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13):15930–15937, September 2023. ISSN 2374-3468. doi:10.1609/aaai.v37i13.26891. URL https://ojs.aaai.org/index.php/AAAI/article/view/26891.
- Dynamic Modeling of User Preferences for Stable Recommendations. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pages 262–266, Utrecht Netherlands, June 2021. ACM. ISBN 978-1-4503-8366-0. doi:10.1145/3450613.3456830. URL https://dl.acm.org/doi/10.1145/3450613.3456830.
- Bolanle Olufisayo Dahunsi. An Ontology-based Knowledgebase for User Profile and Garment Features in Apparel Recommender Systems. In Fifteenth ACM Conference on Recommender Systems, pages 851–854, Amsterdam Netherlands, September 2021. ACM. ISBN 978-1-4503-8458-2. doi:10.1145/3460231.3473901. URL https://dl.acm.org/doi/10.1145/3460231.3473901.
- Robust Generalization and Safe Query-Specializationin Counterfactual Learning to Rank. In Proceedings of the Web Conference 2021, WWW ’21, pages 158–170, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 978-1-4503-8312-7. doi:10.1145/3442381.3450018. URL https://dl.acm.org/doi/10.1145/3442381.3450018.
- The cognitive structure of emotions. Cambridge University Press, 1988.
- Jon Orwant. Heterogeneous learning in the Doppelgänger user modeling system. User Modeling and User-Adapted Interaction, 4(2):107–130, June 1994. ISSN 1573-1391. doi:10.1007/BF01099429. URL https://doi.org/10.1007/BF01099429.
- User profile model: A user dimension based classification. In 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA), pages 1–5, Rabat, October 2015. IEEE. ISBN 978-1-5090-0220-7. doi:10.1109/SITA.2015.7358378. URL http://ieeexplore.ieee.org/document/7358378/.
- Social recommendation: A user profile clustering-based approach. Concurrency and Computation: Practice and Experience, 31(20):e5330, 2019. ISSN 1532-0634. doi:10.1002/cpe.5330. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5330.
- Dynamic user profiling approach for services discovery in mobile environments. In Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, IWCMC ’10, pages 550–554, New York, NY, USA, June 2010. Association for Computing Machinery. ISBN 978-1-4503-0062-9. doi:10.1145/1815396.1815523. URL https://dl.acm.org/doi/10.1145/1815396.1815523.
- Representation Learning-Assisted Click-Through Rate Prediction. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 4561–4567, Macao, China, August 2019. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-4-1. doi:10.24963/ijcai.2019/634. URL https://www.ijcai.org/proceedings/2019/634.
- TAGUS — A user and learner modeling workbench. User Modeling and User-Adapted Interaction, 4(3):197–226, September 1994. ISSN 1573-1391. doi:10.1007/BF01100244. URL https://doi.org/10.1007/BF01100244.
- Learning social representations with deep autoencoder for recommender system. World Wide Web, 23(4):2259–2279, July 2020. ISSN 1573-1413. doi:10.1007/s11280-020-00793-z. URL https://doi.org/10.1007/s11280-020-00793-z.
- Explicit user profiles in web search personalisation. In Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages 416–421, June 2011. doi:10.1109/CSCWD.2011.5960107. URL https://ieeexplore.ieee.org/abstract/document/5960107?casa_token=Bq9oEJKCwqwAAAAA:SfgXL9zUt1DP81HPlasEZi1CEmZm5wm4c8OwYkdTwRVtHNoj-luYxwaNEfpZLRjKFKgRbrEnAg.
- User profiling in intrusion detection: A review. Journal of Network and Computer Applications, 72:14–27, September 2016. ISSN 1084-8045. doi:10.1016/j.jnca.2016.06.012. URL https://www.sciencedirect.com/science/article/pii/S1084804516301412.
- The one to one future: Building relationships one customer at a time. Currency Doubleday, 1993.
- Enterprise one to one: Tools for competing in the interactive age. 1997.
- Speech Acts as a Basis for Understanding Dialogue Coherence. American Journal of Computational Linguistics, pages 32–39, December 1978. URL https://aclanthology.org/J78-3024.
- Inferring user interests in microblogging social networks: a survey. User Modeling and User-Adapted Interaction, 28(3):277–329, August 2018. ISSN 0924-1868, 1573-1391. doi:10.1007/s11257-018-9207-8. URL http://link.springer.com/10.1007/s11257-018-9207-8.
- Web Usage Mining as a Tool for Personalization: A Survey. User Modeling and User-Adapted Interaction, 13(4):311–372, November 2003. ISSN 1573-1391. doi:10.1023/A:1026238916441. URL https://doi.org/10.1023/A:1026238916441.
- User modeling for the social semantic web. In Proceedings of the Second International Conference on Semantic Personalized Information Management: Retrieval and Recommendation - Volume 781, SPIM’11, pages 78–89, Aachen, DEU, 2011. CEUR-WS.org.
- A hybrid approach for user profiling. In 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the, pages 9 pp.–, January 2003. doi:10.1109/HICSS.2003.1174242.
- Item feature refinement using matrix factorization and boosted learning based user profile generation for content-based recommender systems. Expert Systems with Applications, 206:117849, November 2022. ISSN 09574174. doi:10.1016/j.eswa.2022.117849. URL https://linkinghub.elsevier.com/retrieve/pii/S0957417422011046.
- What Are We Missing in Algorithmic Fairness? Discussing Open Challenges for Fairness Analysis in User Profiling with Graph Neural Networks. In Ludovico Boratto, Stefano Faralli, Mirko Marras, and Giovanni Stilo, editors, Advances in Bias and Fairness in Information Retrieval, Communications in Computer and Information Science, pages 169–175, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-37249-0. doi:10.1007/978-3-031-37249-0_14.
- Do Graph Neural Networks Build Fair User Models? Assessing Disparate Impact and Mistreatment in Behavioural User Profiling. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, CIKM ’22, pages 4399–4403, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557584. URL https://doi.org/10.1145/3511808.3557584.
- FUM: Fine-grained and Fast User Modeling for News Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1974–1978, Madrid Spain, July 2022a. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3531790. URL https://dl.acm.org/doi/10.1145/3477495.3531790.
- News Recommendation with Candidate-aware User Modeling. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1917–1921, Madrid Spain, July 2022b. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3531778. URL https://dl.acm.org/doi/10.1145/3477495.3531778.
- Xu Qi. Research on User Profiling Technology for Personalized Demands. In 2010 International Conference on Intelligent Computation Technology and Automation, volume 3, pages 198–201, May 2010. doi:10.1109/ICICTA.2010.252. URL https://ieeexplore.ieee.org/document/5523259.
- Trilateral Spatiotemporal Attention Network for User Behavior Modeling in Location-based Search. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3373–3377, Virtual Event Queensland Australia, October 2021. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482206. URL https://dl.acm.org/doi/10.1145/3459637.3482206.
- FwSeqBlock: A Field-wise Approach for Modeling Behavior Representation in Sequential Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages 4404–4408, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-9236-5. doi:10.1145/3511808.3557601. URL https://dl.acm.org/doi/10.1145/3511808.3557601.
- Learning Implicit User Profile for Personalized Retrieval-Based Chatbot. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 1467–1477, Virtual Event Queensland Australia, October 2021. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482269. URL https://dl.acm.org/doi/10.1145/3459637.3482269.
- Transferring recommendations through privacy user models across domains. User Modeling and User-Adapted Interaction, 32(1):25–90, April 2022. ISSN 1573-1391. doi:10.1007/s11257-021-09307-6. URL https://doi.org/10.1007/s11257-021-09307-6.
- Dynamic profiling of consumers for customized offerings over the Internet: a model and analysis. Decision Support Systems, 32(2):117–134, December 2001. ISSN 0167-9236. doi:10.1016/S0167-9236(01)00106-3. URL https://www.sciencedirect.com/science/article/pii/S0167923601001063.
- Efficient User Profiling in Twitter Social Network Using Traditional Classifiers. In Stefano Berretti, Sabu M. Thampi, and Soura Dasgupta, editors, Intelligent Systems Technologies and Applications, Advances in Intelligent Systems and Computing, pages 399–411, Cham, 2016. Springer International Publishing. ISBN 978-3-319-23258-4. doi:10.1007/978-3-319-23258-4_35.
- Smart Phone User Behaviour Characterization Based on Autoencoders and Self Organizing Maps. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 319–326, December 2016. doi:10.1109/ICDMW.2016.0052. URL https://ieeexplore.ieee.org/abstract/document/7836683. ISSN: 2375-9259.
- Ontology-Based User Modeling for Knowledge Management Systems. In Peter Brusilovsky, Albert Corbett, and Fiorella de Rosis, editors, User Modeling 2003, Lecture Notes in Computer Science, pages 213–217, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-44963-8. doi:10.1007/3-540-44963-9_29.
- Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 565–574, Paris France, July 2019. ACM. ISBN 978-1-4503-6172-9. doi:10.1145/3331184.3331230. URL https://dl.acm.org/doi/10.1145/3331184.3331230.
- Elaine Rich. User Modeling via Stereotypes. Cognitive Science, 3(4):329–354, 1979. ISSN 1551-6709. doi:10.1207/s15516709cog0304_3. URL https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0304_3.
- Ontologies to Model User Profiles in Personalized Job Recommendation. In 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pages 98–103, August 2018. doi:10.1109/DISCOVER.2018.8674084. URL https://ieeexplore.ieee.org/document/8674084.
- Modeling Mental Workload Via Rule-Based Expert System: A Comparison with NASA-TLX and Workload Profile. In Lazaros Iliadis and Ilias Maglogiannis, editors, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, pages 215–229, Cham, 2016. Springer International Publishing. ISBN 978-3-319-44944-9. doi:10.1007/978-3-319-44944-9_19.
- Data mining in education. WIREs Data Mining and Knowledge Discovery, 3(1):12–27, 2013. ISSN 1942-4795. doi:10.1002/widm.1075. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1075.
- Predicting User Demography and Device from News Comments. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pages 1995–1999, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3463024. URL https://dl.acm.org/doi/10.1145/3404835.3463024.
- Multi-modal Behavioural Biometric Authentication for Mobile Devices. In Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, Information Security and Privacy Research, IFIP Advances in Information and Communication Technology, pages 465–474, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-30436-1. doi:10.1007/978-3-642-30436-1_38.
- Continuous user authentication using multi-modal biometrics. Computers & Security, 53:234–246, September 2015. ISSN 0167-4048. doi:10.1016/j.cose.2015.06.001. URL https://www.sciencedirect.com/science/article/pii/S0167404815000875.
- Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100:106983, March 2021. ISSN 1568-4946. doi:10.1016/j.asoc.2020.106983. URL https://www.sciencedirect.com/science/article/pii/S1568494620309224.
- Mohammad Sajib Al Seraj. A Survey on User Modeling in HCI. Computer Applications: An International Journal, 5(1):21–28, February 2018. ISSN 23938455. doi:10.5121/caij.2018.5102. URL http://airccse.com/caij/papers/5118caij02.pdf.
- Model for Profiling Users With Disabilities on e-Learning Platforms. IEEE Access, 9:74258–74274, 2021. ISSN 2169-3536. doi:10.1109/ACCESS.2021.3081061. URL https://ieeexplore.ieee.org/document/9432934.
- AK Santra and S Jayasudha. Classification of web log data to identify interested users using naïve bayesian classification. International Journal of Computer Science Issues (IJCSI), 9(1):381, 2012.
- Mining User Behavioral Rules from Smartphone Data Through Association Analysis. In Dinh Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mohadeseh Ganji, and Lida Rashidi, editors, Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, pages 450–461, Cham, 2018. Springer International Publishing. ISBN 978-3-319-93034-3. doi:10.1007/978-3-319-93034-3_36.
- BehavDT: A Behavioral Decision Tree Learning to Build User-Centric Context-Aware Predictive Model. Mobile Networks and Applications, 25(3):1151–1161, June 2020. ISSN 1572-8153. doi:10.1007/s11036-019-01443-z. URL https://doi.org/10.1007/s11036-019-01443-z.
- Intelligent User Profiling. In Max Bramer, editor, Artificial Intelligence An International Perspective: An International Perspective, Lecture Notes in Computer Science, pages 193–216. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-642-03226-4. doi:10.1007/978-3-642-03226-4_11. URL https://doi.org/10.1007/978-3-642-03226-4_11.
- J. Schreck. Security and Privacy in User Modeling. Springer Science & Business Media, January 2003. ISBN 978-1-4020-1130-6.
- User profiling and virtual agents: a case study on e-commerce services. Universal Access in the Information Society, 7(3):179–194, September 2008. ISSN 1615-5297. doi:10.1007/s10209-008-0116-1. URL https://doi.org/10.1007/s10209-008-0116-1.
- Personalised rating prediction for new users using latent factor models. In Proceedings of the 22nd ACM conference on Hypertext and hypermedia, HT ’11, pages 47–56, New York, NY, USA, 2011. Association for Computing Machinery. ISBN 978-1-4503-0256-2. doi:10.1145/1995966.1995976. URL https://dl.acm.org/doi/10.1145/1995966.1995976.
- Ex2Vec: Characterizing Users and Items from the Mere Exposure Effect. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 971–977, Singapore Singapore, September 2023. ACM. ISBN 9798400702419. doi:10.1145/3604915.3608856. URL https://dl.acm.org/doi/10.1145/3604915.3608856.
- Yuval Shahar. The Ethical Implications of Shared Medical Decision Making without Providing Adequate Computational Support to the Care Provider and to the Patient, February 2021. URL http://arxiv.org/abs/2102.01811.
- User Behavior Analytics for Anomaly Detection Using LSTM Autoencoder - Insider Threat Detection. In Proceedings of the 11th International Conference on Advances in Information Technology, IAIT ’20, pages 1–9, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 978-1-4503-7759-1. doi:10.1145/3406601.3406610. URL https://dl.acm.org/doi/10.1145/3406601.3406610.
- Finding Temporal Influential Users in Social Media Using Association Rule Learning. Intelligent Automation and Soft Computing, 2019. ISSN 1079-8587, 2326-005X. doi:10.31209/2019.100000130. URL http://autosoftjournal.net/paperShow.php?paper=100000130.
- User Profiling based on Nonlinguistic Audio Data. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 2303–2308, April 2021a. doi:10.1109/ICDE51399.2021.00241. URL https://ieeexplore.ieee.org/document/9458756.
- SAR-Net: A Scenario-Aware Ranking Network for Personalized Fair Recommendation in Hundreds of Travel Scenarios. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 4094–4103, Virtual Event Queensland Australia, October 2021b. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3481948. URL https://dl.acm.org/doi/10.1145/3459637.3481948.
- Implicit user modeling for personalized search. In Proceedings of the 14th ACM international conference on Information and knowledge management, CIKM ’05, pages 824–831, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 978-1-59593-140-5. doi:10.1145/1099554.1099747. URL https://dl.acm.org/doi/10.1145/1099554.1099747.
- Dong-Hee Shin. Cross-Platform Users’ Experiences Toward Designing Interusable Systems. International Journal of Human–Computer Interaction, 32(7):503–514, July 2016. ISSN 1044-7318. doi:10.1080/10447318.2016.1177277. URL https://doi.org/10.1080/10447318.2016.1177277.
- Ben Shneiderman. Human-centered AI. Oxford University Press, 2022.
- Understanding User Profiles on Social Media for Fake News Detection. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pages 430–435, April 2018. doi:10.1109/MIPR.2018.00092. URL https://ieeexplore.ieee.org/abstract/document/8397048?casa_token=yFzmKSodQYwAAAAA:gXCf7euQLFE1d9A_TYH9Pv0T7VlTJB6rRu6CdiOz8XZ6Yxs0s4rR1Lg8QOtNfznG92juwPHIsg.
- The role of user profiles for fake news detection. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 436–439, Vancouver British Columbia Canada, August 2019. ACM. ISBN 978-1-4503-6868-1. doi:10.1145/3341161.3342927. URL https://dl.acm.org/doi/10.1145/3341161.3342927.
- Association Rules Mining Among Interests and Applications for Users on Social Networks. IEEE Access, 7:116014–116026, 2019. ISSN 2169-3536. doi:10.1109/ACCESS.2019.2925819. URL https://ieeexplore.ieee.org/abstract/document/8751963. Conference Name: IEEE Access.
- Web search personalization with ontological user profiles. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pages 525–534, Lisbon Portugal, November 2007. ACM. ISBN 978-1-59593-803-9. doi:10.1145/1321440.1321515. URL https://dl.acm.org/doi/10.1145/1321440.1321515.
- User Behavior Profiling using Ensemble Approach for Insider Threat Detection. In 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA), pages 1–8, January 2019. doi:10.1109/ISBA.2019.8778466. URL https://ieeexplore.ieee.org/abstract/document/8778466?casa_token=-dP5bf2m0PkAAAAA:qUdg7W27ArLk0Rg6ahD_Pz9NjOhlsCNYAeRl8Xz-l6HCq1XH3WtDVXCfGiiax6YKovKcvwvWxWoI.
- Optimized recommendations by user profiling using apriori algorithm. Applied Soft Computing, 106:107272, July 2021. ISSN 15684946. doi:10.1016/j.asoc.2021.107272. URL https://linkinghub.elsevier.com/retrieve/pii/S1568494621001952.
- Ontological User Profile Modeling for Context-Aware Application Personalization. In José Bravo, Diego López-de Ipiña, and Francisco Moya, editors, Ubiquitous Computing and Ambient Intelligence, Lecture Notes in Computer Science, pages 261–268, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-35377-2. doi:10.1007/978-3-642-35377-2_36.
- D. Sleeman. UMFE: A user modelling front-end subsystem. International Journal of Man-Machine Studies, 23(1):71–88, July 1985. ISSN 0020-7373. doi:10.1016/S0020-7373(85)80025-0. URL https://www.sciencedirect.com/science/article/pii/S0020737385800250.
- A Rule-Based Recommendation Approach for Business Process Modeling. In Marcello La Rosa, Shazia Sadiq, and Ernest Teniente, editors, Advanced Information Systems Engineering, Lecture Notes in Computer Science, pages 328–343, Cham, 2021. Springer International Publishing. ISBN 978-3-030-79382-1. doi:10.1007/978-3-030-79382-1_20.
- Predict Demographic Information Using Word2vec on Spatial Trajectories. In Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18, pages 331–339, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 978-1-4503-5589-6. doi:10.1145/3209219.3209224. URL https://dl.acm.org/doi/10.1145/3209219.3209224.
- Ontological technologies for user modelling. International Journal of Metadata, Semantics and Ontologies, 5(1):32, 2010. ISSN 1744-2621, 1744-263X. doi:10.1504/IJMSO.2010.032649. URL http://www.inderscience.com/link.php?id=32649.
- A Hybrid Recommender System: User Profiling from Keywords and Ratings. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 1, pages 73–80, November 2013. doi:10.1109/WI-IAT.2013.11. URL https://ieeexplore.ieee.org/abstract/document/6689996.
- Task-Based Visual Interactive Modeling: Decision Trees and Rule-Based Classifiers. IEEE Transactions on Visualization and Computer Graphics, 28(9):3307–3323, September 2022. ISSN 1077-2626, 1941-0506, 2160-9306. doi:10.1109/TVCG.2020.3045560. URL https://ieeexplore.ieee.org/document/9321557/.
- Cognitive User Modeling for Adaptivity in Serious Games. In Intelligent Human Systems Integration (IHSI 2024): Integrating People and Intelligent Systems, volume 119. AHFE Open Acces, 2024. ISBN 978-1-958651-95-7. doi:10.54941/ahfe1004472. URL https://openaccess.cms-conferences.org/publications/book/978-1-958651-95-7/article/978-1-958651-95-7_8.
- V. Subramaniyaswamy and R. Logesh. Adaptive KNN based Recommender System through Mining of User Preferences. Wireless Personal Communications, 97(2):2229–2247, November 2017. ISSN 1572-834X. doi:10.1007/s11277-017-4605-5. URL https://doi.org/10.1007/s11277-017-4605-5.
- Web User Profile Generation and Discovery Analysis using LSTM Architecture. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), pages 371–375, October 2022. doi:10.1109/ICTACS56270.2022.9988505. URL https://ieeexplore.ieee.org/document/9988505.
- Where to Go Next: Modeling Long- and Short-Term User Preferences for Point-of-Interest Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):214–221, April 2020. ISSN 2374-3468. doi:10.1609/aaai.v34i01.5353. URL https://ojs.aaai.org/index.php/AAAI/article/view/5353.
- Modelling MOOC learners’ social behaviours. Computers in Human Behavior, 107:105835, June 2020. ISSN 0747-5632. doi:10.1016/j.chb.2018.12.013. URL https://www.sciencedirect.com/science/article/pii/S0747563218305995.
- Building user profiles based on sequences for content and collaborative filtering. Information Processing & Management, 56(1):192–211, January 2019. ISSN 0306-4573. doi:10.1016/j.ipm.2018.10.003. URL https://www.sciencedirect.com/science/article/pii/S0306457318302735.
- User Modeling in the Era of Large Language Models: Current Research and Future Directions, December 2023. URL https://arxiv.org/abs/2312.11518v2.
- User modeling with neural network for review rating prediction. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages 1340–1346, Buenos Aires, Argentina, 2015. AAAI Press. ISBN 978-1-57735-738-4.
- A Combination Approach to Web User Profiling. ACM Transactions on Knowledge Discovery from Data, 5(1):2:1–2:44, December 2010. ISSN 1556-4681. doi:10.1145/1870096.1870098. URL https://dl.acm.org/doi/10.1145/1870096.1870098.
- Dieudonne Tchuente. User Modeling and Profiling in Information Systems: A Bibliometric Study and Future Research Directions. Journal of Global Information Management (JGIM), 30(1):1–25, January 2022. ISSN 1062-7375. doi:10.4018/JGIM.307116. URL https://www.igi-global.com/article/user-modeling-and-profiling-in-information-systems/www.igi-global.com/article/user-modeling-and-profiling-in-information-systems/307116.
- A cross-modal UX design pedagogy for industrial design. In Proceedings of the 17th International Audio Mostly Conference, AM ’22, pages 195–198, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-9701-8. doi:10.1145/3561212.3561241. URL https://doi.org/10.1145/3561212.3561241.
- Maritzol Tenemaza. User models for recommendation systems. In Human Factors and Systems Interaction, volume 52. AHFE Open Acces, 2022. ISBN 978-1-958651-28-5. doi:10.54941/ahfe1002188. URL https://openaccess.cms-conferences.org/publications/book/978-1-958651-28-5/article/978-1-958651-28-5_56.
- Exploiting Regression Trees as User Models for Intent-Aware Multi-attribute Diversity. In Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), pages 2–9, Vienna, Austria, 2015.
- A Reinforcement Learning and Recurrent Neural Network Based Dynamic User Modeling System. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT), pages 411–415, July 2018. doi:10.1109/ICALT.2018.00103. URL https://ieeexplore.ieee.org/abstract/document/8433551?casa_token=BpGaGAEPhu4AAAAA:x42YQHbh30JK5eSer5Mky4k8Y3pTxF-8YxZIZZ3qmN_7I2GYkMSuauIa9i2AJ1KP9Sj71CsT7KpL.
- Naive Bayes Classification Model for the Student Performance Prediction. In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), volume 1, pages 1548–1553, July 2019. doi:10.1109/ICICICT46008.2019.8993237. URL https://ieeexplore.ieee.org/abstract/document/8993237.
- Jan-Willem van Dam and Michel van de Velden. Online profiling and clustering of Facebook users. Decision Support Systems, 70:60–72, February 2015. ISSN 0167-9236. doi:10.1016/j.dss.2014.12.001. URL https://www.sciencedirect.com/science/article/pii/S0167923614002796.
- When Inverse Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to Rank. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM ’20, pages 1475–1484, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 978-1-4503-6859-9. doi:10.1145/3340531.3412031. URL https://dl.acm.org/doi/10.1145/3340531.3412031.
- Julita Vassileva. Motivating participation in social computing applications: a user modeling perspective. User Modeling and User-Adapted Interaction, 22(1):177–201, April 2012. ISSN 1573-1391. doi:10.1007/s11257-011-9109-5. URL https://doi.org/10.1007/s11257-011-9109-5.
- Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. IEEE Transactions on Learning Technologies, 5(4):318–335, October 2012. ISSN 1939-1382, 2372-0050. doi:10.1109/TLT.2012.11. URL https://ieeexplore.ieee.org/document/6189308/.
- Antoni Virós-i Martin and Daniel Selva. Improving Designer Learning in Design Space Exploration by Adapting to the Designer’s Learning Goals. In International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, November 2022. doi:10.1115/DETC2022-89207. URL https://dx.doi.org/10.1115/DETC2022-89207.
- A Survey on User Modeling in Multi-application Environments. In 2010 Third International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services, pages 111–116, August 2010. doi:10.1109/CENTRIC.2010.30. URL https://ieeexplore.ieee.org/abstract/document/5600339.
- An integrated framework of learning and evidential reasoning for user profiling using short texts. Information Fusion, 70:27–42, June 2021. ISSN 15662535. doi:10.1016/j.inffus.2020.12.004. URL https://linkinghub.elsevier.com/retrieve/pii/S1566253520304292.
- Temporal Latent Topic User Profiles for Search Personalisation. In Allan Hanbury, Gabriella Kazai, Andreas Rauber, and Norbert Fuhr, editors, Advances in Information Retrieval, Lecture Notes in Computer Science, pages 605–616, Cham, 2015. Springer International Publishing. ISBN 978-3-319-16354-3. doi:10.1007/978-3-319-16354-3_67.
- User Models in Dialog Systems. In Alfred Kobsa and Wolfgang Wahlster, editors, User Models in Dialog Systems, Symbolic Computation, pages 4–34, Berlin, Heidelberg, 1989. Springer. ISBN 978-3-642-83230-7. doi:10.1007/978-3-642-83230-7_1.
- DeepProfile: Finding fake profile in online social network using dynamic CNN. Journal of Information Security and Applications, 52:102465, June 2020. ISSN 22142126. doi:10.1016/j.jisa.2020.102465. URL https://linkinghub.elsevier.com/retrieve/pii/S2214212619303801.
- Enhancing User Interest Modeling with Knowledge-Enriched Itemsets for Sequential Recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 1889–1898, Virtual Event Queensland Australia, October 2021a. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482256. URL https://dl.acm.org/doi/10.1145/3459637.3482256.
- Calendar Graph Neural Networks for Modeling Time Structures in Spatiotemporal User Behaviors. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, pages 2581–2589, New York, NY, USA, 2020a. Association for Computing Machinery. ISBN 978-1-4503-7998-4. doi:10.1145/3394486.3403308. URL https://dl.acm.org/doi/10.1145/3394486.3403308.
- Designing Theory-Driven User-Centric Explainable AI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–15, New York, NY, USA, 2019a. Association for Computing Machinery. ISBN 978-1-4503-5970-2. doi:10.1145/3290605.3300831. URL https://dl.acm.org/doi/10.1145/3290605.3300831.
- Reinforced Imitative Graph Representation Learning for Mobile User Profiling: An Adversarial Training Perspective. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4410–4417, May 2021b. ISSN 2374-3468. doi:10.1609/aaai.v35i5.16567. URL https://ojs.aaai.org/index.php/AAAI/article/view/16567.
- Improving News Recommendation with Channel-Wise Dynamic Representations and Contrastive User Modeling. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pages 562–570, Singapore Singapore, February 2023. ACM. ISBN 978-1-4503-9407-9. doi:10.1145/3539597.3570447. URL https://dl.acm.org/doi/10.1145/3539597.3570447.
- Adversarial Substructured Representation Learning for Mobile User Profiling. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 130–138, New York, NY, USA, 2019b. Association for Computing Machinery. ISBN 978-1-4503-6201-6. doi:10.1145/3292500.3330869. URL https://dl.acm.org/doi/10.1145/3292500.3330869.
- Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, pages 853–861, New York, NY, USA, August 2020b. Association for Computing Machinery. ISBN 978-1-4503-7998-4. doi:10.1145/3394486.3403128. URL https://dl.acm.org/doi/10.1145/3394486.3403128.
- User Identity Linkage Across Social Networks by Heterogeneous Graph Attention Network Modeling. Applied Sciences, 10(16):5478, January 2020c. ISSN 2076-3417. doi:10.3390/app10165478. URL https://www.mdpi.com/2076-3417/10/16/5478.
- Attention-based dynamic user modeling and Deep Collaborative filtering recommendation. Expert Systems with Applications, 188:116036, February 2022a. ISSN 09574174. doi:10.1016/j.eswa.2021.116036. URL https://linkinghub.elsevier.com/retrieve/pii/S0957417421013816.
- Modeling Spatio-temporal Neighbourhood for Personalized Point-of-interest Recommendation. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, pages 3530–3536, Vienna, Austria, July 2022b. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi:10.24963/ijcai.2022/490. URL https://www.ijcai.org/proceedings/2022/490.
- Beyond the Words: Predicting User Personality from Heterogeneous Information. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM ’17, pages 305–314, New York, NY, USA, February 2017. Association for Computing Machinery. ISBN 978-1-4503-4675-7. doi:10.1145/3018661.3018717. URL https://dl.acm.org/doi/10.1145/3018661.3018717.
- Hierarchical User Intent Graph Network for Multimedia Recommendation. IEEE Transactions on Multimedia, 24:2701–2712, 2022. ISSN 1520-9210, 1941-0077. doi:10.1109/TMM.2021.3088307. URL https://ieeexplore.ieee.org/document/9453189/.
- Hierarchically Modeling Micro and Macro Behaviors via Multi-Task Learning for Conversion Rate Prediction. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2187–2191, Virtual Event Canada, July 2021. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3463053. URL https://dl.acm.org/doi/10.1145/3404835.3463053.
- Hierarchical User and Item Representation with Three-Tier Attention for Recommendation. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1818–1826, Minneapolis, Minnesota, June 2019a. Association for Computational Linguistics. doi:10.18653/v1/N19-1180. URL https://aclanthology.org/N19-1180.
- User Modeling with Click Preference and Reading Satisfaction for News Recommendation. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pages 3023–3029, Yokohama, Japan, July 2020a. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-6-5. doi:10.24963/ijcai.2020/418. URL https://www.ijcai.org/proceedings/2020/418.
- PTUM: Pre-training User Model from Unlabeled User Behaviors via Self-supervision. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1939–1944, Online, November 2020b. Association for Computational Linguistics. doi:10.18653/v1/2020.findings-emnlp.174. URL https://aclanthology.org/2020.findings-emnlp.174.
- User-as-Graph: User Modeling with Heterogeneous Graph Pooling for News Recommendation. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pages 1624–1630, Montreal, Canada, August 2021a. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi:10.24963/ijcai.2021/224. URL https://www.ijcai.org/proceedings/2021/224.
- UserBERT: Pre-training User Model with Contrastive Self-supervision. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22, pages 2087–2092, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3531810. URL https://dl.acm.org/doi/10.1145/3477495.3531810.
- Hierarchical Personalized Federated Learning for User Modeling. In Proceedings of the Web Conference 2021, WWW ’21, pages 957–968, New York, NY, USA, 2021b. Association for Computing Machinery. ISBN 978-1-4503-8312-7. doi:10.1145/3442381.3449926. URL https://dl.acm.org/doi/10.1145/3442381.3449926.
- Long- and Short-term Preference Learning for Next POI Recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, pages 2301–2304, New York, NY, USA, November 2019b. Association for Computing Machinery. ISBN 978-1-4503-6976-3. doi:10.1145/3357384.3358171. URL https://dl.acm.org/doi/10.1145/3357384.3358171.
- Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4486–4493, May 2021a. ISSN 2374-3468. doi:10.1609/aaai.v35i5.16576. URL https://ojs.aaai.org/index.php/AAAI/article/view/16576.
- Graph Meta Network for Multi-Behavior Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, pages 757–766, New York, NY, USA, 2021b. Association for Computing Machinery. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462972. URL https://dl.acm.org/doi/10.1145/3404835.3462972.
- EX3: Explainable Attribute-aware Item-set Recommendations. In Fifteenth ACM Conference on Recommender Systems, pages 484–494, Amsterdam Netherlands, September 2021. ACM. ISBN 978-1-4503-8458-2. doi:10.1145/3460231.3474240. URL https://dl.acm.org/doi/10.1145/3460231.3474240.
- Yi Xie and Shun-Zheng Yu. A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors. IEEE/ACM Transactions on Networking, 17(1):54–65, February 2009. ISSN 1558-2566. doi:10.1109/TNET.2008.923716. URL https://ieeexplore.ieee.org/abstract/document/4515888?casa_token=ZOYglc4HMlIAAAAA:MBeNUBQELp00Pr41tN22uSBK3BB_zJUbsXvHR2bceHVLS-NN6NvK6W5awUZlSCBSH1Bu1I45z2Wr. Conference Name: IEEE/ACM Transactions on Networking.
- Rethinking Personalized Ranking at Pinterest: An End-to-End Approach. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 502–505, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3547394. URL https://dl.acm.org/doi/10.1145/3523227.3547394.
- Knowledge Enhancement for Contrastive Multi-Behavior Recommendation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pages 195–203, Singapore Singapore, February 2023. ACM. ISBN 978-1-4503-9407-9. doi:10.1145/3539597.3570386. URL https://dl.acm.org/doi/10.1145/3539597.3570386.
- Factorial User Modeling with Hierarchical Graph Neural Network for Enhanced Sequential Recommendation. In 2022 IEEE International Conference on Multimedia and Expo (ICME), pages 01–06, July 2022. doi:10.1109/ICME52920.2022.9859593. URL https://ieeexplore.ieee.org/abstract/document/9859593?casa_token=PAT2krzHwr4AAAAA:omo9Z2VMKd-NUqf84e9NK2JJCk8yYsivZV_VJljR-DOrRYlLzyXfYNaJS3CKG3h-yZo1oz-w6g.
- Satyajit Yadav and S. Selvakumar. Detection of application layer DDoS attack by modeling user behavior using logistic regression. In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pages 1–6, September 2015. doi:10.1109/ICRITO.2015.7359289. URL https://ieeexplore.ieee.org/abstract/document/7359289.
- Relation-aware Heterogeneous Graph for User Profiling. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM ’21, pages 3573–3577, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482170. URL https://doi.org/10.1145/3459637.3482170.
- Interaction-aware Hypergraph Neural Networks for User Profiling. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pages 1–10, Shenzhen, China, October 2022. IEEE. ISBN 978-1-66547-330-9. doi:10.1109/DSAA54385.2022.10032374. URL https://ieeexplore.ieee.org/document/10032374/.
- Going Beyond Local: Global Graph-Enhanced Personalized News Recommendations. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 24–34, Singapore Singapore, September 2023. ACM. ISBN 9798400702419. doi:10.1145/3604915.3608801. URL https://dl.acm.org/doi/10.1145/3604915.3608801.
- Modeling Two-Way Selection Preference for Person-Job Fit. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 102–112, Seattle WA USA, September 2022. ACM. ISBN 978-1-4503-9278-5. doi:10.1145/3523227.3546752. URL https://dl.acm.org/doi/10.1145/3523227.3546752.
- Local Factor Models for Large-Scale Inductive Recommendation. In Fifteenth ACM Conference on Recommender Systems, pages 252–262, Amsterdam Netherlands, September 2021. ACM. ISBN 978-1-4503-8458-2. doi:10.1145/3460231.3474276. URL https://dl.acm.org/doi/10.1145/3460231.3474276.
- Personalisation in Cyber-Physical-Social Systems: A Multi-stakeholder aware Recommendation and Guidance. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pages 251–255, Utrecht Netherlands, June 2021. ACM. ISBN 978-1-4503-8366-0. doi:10.1145/3450613.3456847. URL https://dl.acm.org/doi/10.1145/3450613.3456847.
- Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 4213–4219, Macao, China, August 2019. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-4-1. doi:10.24963/ijcai.2019/585. URL https://www.ijcai.org/proceedings/2019/585.
- Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1469–1478, Virtual Event China, July 2020a. ACM. ISBN 978-1-4503-8016-4. doi:10.1145/3397271.3401156. URL https://dl.acm.org/doi/10.1145/3397271.3401156.
- One Person, One Model, One World: Learning Continual User Representation without Forgetting. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 696–705, Virtual Event Canada, July 2021. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462884. URL https://dl.acm.org/doi/10.1145/3404835.3462884.
- A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting User Preferences in Recommender Systems. In Proceedings of The Web Conference 2020, WWW ’20, pages 498–507, New York, NY, USA, April 2020b. Association for Computing Machinery. ISBN 978-1-4503-7023-3. doi:10.1145/3366423.3380133. URL https://dl.acm.org/doi/10.1145/3366423.3380133.
- Connecting users across social media sites: a behavioral-modeling approach. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 41–49, Chicago Illinois USA, August 2013. ACM. ISBN 978-1-4503-2174-7. doi:10.1145/2487575.2487648. URL https://dl.acm.org/doi/10.1145/2487575.2487648.
- Yilei Zeng. How Human Centered AI Will Contribute Towards Intelligent Gaming Systems. Proceedings of the AAAI Conference on Artificial Intelligence, 35(18):15742–15743, May 2021. ISSN 2374-3468. doi:10.1609/aaai.v35i18.17868. URL https://ojs.aaai.org/index.php/AAAI/article/view/17868.
- Evaluating Simulated User Interaction and Search Behaviour. In Matthias Hagen, Suzan Verberne, Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay Setty, editors, Advances in Information Retrieval, Lecture Notes in Computer Science, pages 240–247, Cham, 2022. Springer International Publishing. ISBN 978-3-030-99739-7. doi:10.1007/978-3-030-99739-7_28.
- An Adaptive Method for User Profile Learning. In Barbara Catania, Giovanna Guerrini, and Jaroslav Pokorný, editors, Advances in Databases and Information Systems, Lecture Notes in Computer Science, pages 126–134, Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-40683-6. doi:10.1007/978-3-642-40683-6_10.
- Dual Personalization on Federated Recommendation, May 2023a. URL http://arxiv.org/abs/2301.08143.
- Daily electric vehicle charging load profiles considering demographics of vehicle users. Applied Energy, 274:115063, September 2020. ISSN 03062619. doi:10.1016/j.apenergy.2020.115063. URL https://linkinghub.elsevier.com/retrieve/pii/S0306261920305754.
- Leaving No One Behind: A Multi-Scenario Multi-Task Meta Learning Approach for Advertiser Modeling. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pages 1368–1376, Virtual Event AZ USA, February 2022. ACM. ISBN 978-1-4503-9132-0. doi:10.1145/3488560.3498479. URL https://dl.acm.org/doi/10.1145/3488560.3498479.
- Learning User Preferences Without Feedbacks. In 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pages 1–2, Porto, Portugal, October 2021. IEEE. ISBN 978-1-66542-099-0. doi:10.1109/DSAA53316.2021.9564131. URL https://ieeexplore.ieee.org/document/9564131/.
- Yi Zhang and Jonathan Koren. Efficient bayesian hierarchical user modeling for recommendation system. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’07, pages 47–54, New York, NY, USA, 2007. Association for Computing Machinery. ISBN 978-1-59593-597-7. doi:10.1145/1277741.1277752. URL https://dl.acm.org/doi/10.1145/1277741.1277752.
- FairLISA: Fair User Modeling with Limited Sensitive Attributes Information. In Thirty-seventh Conference on Neural Information Processing Systems, November 2023b. URL https://openreview.net/forum?id=uFpjPJMkv6.
- Co-learning Graph Convolution Network for Mobile User Profiling. Neural Processing Letters, 54(6):5299–5316, December 2022. ISSN 1573-773X. doi:10.1007/s11063-022-10862-1. URL https://doi.org/10.1007/s11063-022-10862-1.
- AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pages 2104–2110, August 2021. doi:10.24963/ijcai.2021/290. URL http://arxiv.org/abs/2006.05933.
- From preference into decision making: modeling user interactions in recommender systems. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19, pages 29–33, New York, NY, USA, 2019a. Association for Computing Machinery. ISBN 978-1-4503-6243-6. doi:10.1145/3298689.3347065. URL https://dl.acm.org/doi/10.1145/3298689.3347065.
- User profiling from their use of smartphone applications: A survey. Pervasive and Mobile Computing, 59:101052, October 2019b. ISSN 15741192. doi:10.1016/j.pmcj.2019.101052. URL https://linkinghub.elsevier.com/retrieve/pii/S1574119219300124.
- PERD: Personalized Emoji Recommendation with Dynamic User Preference. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1922–1926, Madrid Spain, July 2022a. ACM. ISBN 978-1-4503-8732-3. doi:10.1145/3477495.3531779. URL https://dl.acm.org/doi/10.1145/3477495.3531779.
- CBR: Context Bias aware Recommendation for Debiasing User Modeling and Click Prediction. In Proceedings of the ACM Web Conference 2022, WWW ’22, pages 2268–2276, New York, NY, USA, April 2022b. Association for Computing Machinery. ISBN 978-1-4503-9096-5. doi:10.1145/3485447.3512099. URL https://dl.acm.org/doi/10.1145/3485447.3512099.
- ComSoc: adaptive transfer of user behaviors over composite social network. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’12, pages 696–704, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 978-1-4503-1462-6. doi:10.1145/2339530.2339641. URL https://dl.acm.org/doi/10.1145/2339530.2339641.
- Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 1059–1068, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 978-1-4503-5552-0. doi:10.1145/3219819.3219823. URL https://dl.acm.org/doi/10.1145/3219819.3219823.
- Equivariant Contrastive Learning for Sequential Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 129–140, Singapore Singapore, September 2023. ACM. ISBN 9798400702419. doi:10.1145/3604915.3608786. URL https://dl.acm.org/doi/10.1145/3604915.3608786.
- Inferring user goals from personality and behavior in a causal model of user affect. In Proceedings of the 8th international conference on Intelligent user interfaces, IUI ’03, pages 211–218, New York, NY, USA, 2003. Association for Computing Machinery. ISBN 978-1-58113-586-2. doi:10.1145/604045.604078. URL https://dl.acm.org/doi/10.1145/604045.604078.
- The state-of-the-art in personalized recommender systems for social networking. Artificial Intelligence Review, 37(2):119–132, February 2012. ISSN 0269-2821, 1573-7462. doi:10.1007/s10462-011-9222-1. URL http://link.springer.com/10.1007/s10462-011-9222-1.
- Encoding History with Context-aware Representation Learning for Personalized Search. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1111–1120, Virtual Event China, July 2020a. ACM. ISBN 978-1-4503-8016-4. doi:10.1145/3397271.3401175. URL https://dl.acm.org/doi/10.1145/3397271.3401175.
- Enhancing Re-finding Behavior with External Memories for Personalized Search. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20, pages 789–797, New York, NY, USA, 2020b. Association for Computing Machinery. ISBN 978-1-4503-6822-3. doi:10.1145/3336191.3371794. URL https://dl.acm.org/doi/10.1145/3336191.3371794.
- Group based Personalized Search by Integrating Search Behaviour and Friend Network. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 92–101, Virtual Event Canada, July 2021a. ACM. ISBN 978-1-4503-8037-9. doi:10.1145/3404835.3462918. URL https://dl.acm.org/doi/10.1145/3404835.3462918.
- PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2749–2758, Virtual Event Queensland Australia, October 2021b. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482379. URL https://dl.acm.org/doi/10.1145/3459637.3482379.
- What to do next: modeling user behaviors by time-LSTM. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pages 3602–3608, Melbourne, Australia, 2017. AAAI Press. ISBN 978-0-9992411-0-3.
- Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2780–2791, Virtual Event Queensland Australia, October 2021. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482243. URL https://dl.acm.org/doi/10.1145/3459637.3482243.
- Philip Zigoris and Yi Zhang. Bayesian adaptive user profiling with explicit & implicit feedback. In Proceedings of the 15th ACM international conference on Information and knowledge management, CIKM ’06, pages 397–404, New York, NY, USA, November 2006. Association for Computing Machinery. ISBN 978-1-59593-433-8. doi:10.1145/1183614.1183672. URL https://dl.acm.org/doi/10.1145/1183614.1183672.
- Exposing profiles to build trust in a recommender. In CHI ’02 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’02, pages 608–609, New York, NY, USA, April 2002. Association for Computing Machinery. ISBN 978-1-58113-454-4. doi:10.1145/506443.506507. URL https://dl.acm.org/doi/10.1145/506443.506507.
- TV Personalization System. In Personalized Digital Television: Targeting Programs to individual Viewers, Human-Computer Interaction Series, pages 27–51. Springer Netherlands, Dordrecht, 2004. ISBN 978-1-4020-2164-0. doi:10.1007/1-4020-2164-X_2. URL https://doi.org/10.1007/1-4020-2164-X_2.
- Predictive Statistical Models for User Modeling. User Modeling and User-Adapted Interaction, 11(1):5–18, March 2001. ISSN 1573-1391. doi:10.1023/A:1011175525451. URL https://doi.org/10.1023/A:1011175525451.
- Modeling needs user modeling. Frontiers in Artificial Intelligence, 6, 2023. ISSN 2624-8212. doi:10.3389/frai.2023.1097891. URL https://www.frontiersin.org/articles/10.3389/frai.2023.1097891.
- User Modeling Using LSTM Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), February 2017. ISSN 2374-3468. doi:10.1609/aaai.v31i1.11068. URL https://ojs.aaai.org/index.php/AAAI/article/view/11068.