Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Superconducting qubit readout enhanced by path signature (2402.09532v4)

Published 14 Feb 2024 in quant-ph

Abstract: Quantum non-demolition measurement plays an essential role in quantum technology, crucial for quantum error correction, metrology, and sensing. Conventionally, the qubit state is classified from the raw or integrated time-domain measurement record. Here, we demonstrate a method to enhance the assignment fidelity of the readout by considering the "path signature" of this measurement record, where the path signature is a mathematical tool for analyzing stochastic time series. We evaluate this approach across five different hardware setups, including those with and without readout multiplexing and parametric amplifiers, and demonstrate a significant improvement in assignment fidelity across all setups. Moreover, we show that the path signature of the measurement record provides an expressive feature set that can be used to detect and classify state transitions that occurred during the measurement, improving the prediction of the qubit state at the end of the measurement. This method has the potential to become a foundational tool for quantum technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. S. Kohler, Phys. Rev. A 98, 023849 (2018).
  2. B. D’Anjou and G. Burkard, Phys. Rev. B 100, 245427 (2019).
  3. G. Burkard and J. R. Petta, Phys. Rev. B 94, 195305 (2016).
  4. T. Thorbeck, Z. Xiao, A. Kamal,  and L. C. G. Govia, “Readout-induced suppression and enhancement of superconducting qubit lifetimes,”  (2023), arXiv:2305.10508 .
  5. T. Lyons, in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. IV (Kyung Moon Sa, Seoul, 2014) pp. 163–184.
  6. I. Chevyrev and A. Kormilitzin, arXiv preprint arXiv:1603.03788  (2016).
  7. S. Cao, D. Lall, M. Bakr, G. Campanaro, S. Fasciati, J. Wills, V. Chidambaram, B. Shteynas, I. Rungger,  and P. Leek, “Efficient qutrit gate-set tomography on a transmon,”  (2022), arXiv:2210.04857 .
  8. S. Cao, M. Bakr, G. Campanaro, S. D. Fasciati, J. Wills, D. Lall, B. Shteynas, V. Chidambaram, I. Rungger,  and P. Leek, “Emulating two qubits with a four-level transmon qudit for variational quantum algorithms,”  (2023), arXiv:2303.04796 .
  9. T. Lyons, “Rough paths, signatures and the modelling of functions on streams,”  (2014b), arXiv:1405.4537 .
  10. F. E. van Dorsselaer and G. Nienhuis, Journal of Optics B: Quantum and Semiclassical Optics 2, R25 (2000).
  11. R. Flack and B. J. Hiley, Journal of Physics: Conference Series 504, 012016 (2014).
  12. A. Richards,   (2015), 10.5281/ZENODO.22558.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.