Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Mass Beyond Measure: Eccentric Searches for Black Hole Populations (2402.09513v1)

Published 14 Feb 2024 in gr-qc, astro-ph.CO, astro-ph.HE, and hep-ph

Abstract: Stellar mass binary black holes of unknown formation mechanism have been observed, motivating new methods for distinguishing distinct black hole populations. This work explores how the orbital eccentricity of stellar mass binary black holes is a viable conduit for making such distinctions. Four different production mechanisms, and their corresponding eccentricity distributions, are studied in the context of an experimental landscape composed of mHz (LISA), dHz (DECIGO), and Hz (LIGO) range gravitational wave detectors. We expand on prior work considering these effects at fixed population eccentricity. We show that a strong signal corresponding to subsets of eccentric populations is effectively hidden from the mHz and dHz range gravitational wave detectors without the incorporation of high eccentricity waveform templates. Even with sufficiently large eccentricity templates, we find dHz range experiments with a LISA-like level of sensitivity are unlikely to aid in distinguishing different populations. We consider the degree to which a mHz range detector like LISA can differentiate among black hole populations independently and in concert with follow-up merger detection for binaries coalescing within a 10 year period. We find that mHz range detectors, with only $e < 0.01$ (nearly circular) sensitivity, can successfully discern eccentric sub-populations except when attempting to distinguish very low eccentricity distributions. In these cases where $e < 0.01$ sensitivity is insufficient, we find that the increase in event counts resulting from $e < 0.1$ sensitivity provides a statistically significant signal for discerning even these low eccentricity sub-populations. While improvements offered by $e<0.1$ sensitivity can be generally increased by $\mathcal{O}(1)$ factors with $e<0.4$ sensitivity, going beyond this in eccentricity sensitivity provides negligible enhancement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  2. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,”  (2021), arXiv:2111.03606 [gr-qc] .
  3. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 125, 101102 (2020), arXiv:2009.01075 [gr-qc] .
  4. C. McIsaac, C. Hoy,  and I. Harry, “A search technique to observe precessing compact binary mergers in the advanced detector era,”  (2023), arXiv:2303.17364 [gr-qc] .
  5. P. J. Armitage and P. Natarajan, Astrophys. J. 634, 921 (2005), arXiv:astro-ph/0508493 .
  6. F. Antonini and H. B. Perets, Astrophys. J. 757, 27 (2012), arXiv:1203.2938 [astro-ph.GA] .
  7. L. Randall and Z.-Z. Xianyu, Astrophys. J. 864, 134 (2018a), arXiv:1802.05718 [gr-qc] .
  8. P. A. Seoane et al. (LISA), Living Rev. Rel. 26, 2 (2023), arXiv:2203.06016 [gr-qc] .
  9. L. Randall and Z.-Z. Xianyu, “Observing Eccentricity Oscillations of Binary Black Holes in LISA,”  (2019), arXiv:1902.08604 [astro-ph.HE] .
  10. S. Naoz, Annual Review of Astronomy and Astrophysics 54, 441 (2016).
  11. R. S. Chandramouli and N. Yunes, Phys. Rev. D 105, 064009 (2022), arXiv:2107.00741 [gr-qc] .
  12. L. Randall and Z.-Z. Xianyu, Astrophys. J. 914, 75 (2021), arXiv:1907.02283 [astro-ph.HE] .
  13. P. C. Peters, Phys. Rev. 136, B1224 (1964).
  14. L. Randall and Z.-Z. Xianyu, Astrophys. J. 853, 93 (2018b), arXiv:1708.08569 [gr-qc] .
  15. B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 882, L24 (2019b), arXiv:1811.12940 [astro-ph.HE] .
  16. K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
  17. M. A. Sedda et al., Exper. Astron. 51, 1427 (2021), arXiv:2104.14583 [gr-qc] .
  18. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 96, 022001 (2017), arXiv:1704.04628 [gr-qc] .
  19. M. C. Digman and N. J. Cornish, Phys. Rev. D 108, 023022 (2023), arXiv:2212.04600 [gr-qc] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube