Papers
Topics
Authors
Recent
2000 character limit reached

Data Reconstruction Attacks and Defenses: A Systematic Evaluation (2402.09478v3)

Published 13 Feb 2024 in cs.CR and cs.LG

Abstract: Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical grounding, and cannot disentangle the usefulness of defending methods from the computational limitation of attacking methods. In this work, we propose to view the problem as an inverse problem, enabling us to theoretically and systematically evaluate the data reconstruction attack. On various defense methods, we derived the algorithmic upper bound and the matching (in feature dimension and architecture dimension) information-theoretical lower bound on the reconstruction error for two-layer neural networks. To complement the theoretical results and investigate the utility-privacy trade-off, we defined a natural evaluation metric of the defense methods with similar utility loss among the strongest attacks. We further propose a strong reconstruction attack that helps update some previous understanding of the strength of defense methods under our proposed evaluation metric.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. H. Li, D. Guo, W. Fan, M. Xu, and Y. Song, “Multi-step jailbreaking privacy attacks on chatgpt,” arXiv preprint arXiv:2304.05197, 2023.
  2. N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of security and privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.
  3. J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for improving communication efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning, 2016. [Online]. Available: https://arxiv.org/abs/1610.05492
  4. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  5. H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through gradients: Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 337–16 346.
  6. Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating gradient inversion attacks and defenses in federated learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 7232–7241, 2021.
  7. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information processing systems, vol. 32, 2019.
  8. J. Jeon, K. Lee, S. Oh, J. Ok et al., “Gradient inversion with generative image prior,” Advances in neural information processing systems, vol. 34, pp. 29 898–29 908, 2021.
  9. C. Dwork, “Differential privacy,” in Automata, Languages and Programming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II 33.   Springer, 2006, pp. 1–12.
  10. C. Guo, B. Karrer, K. Chaudhuri, and L. van der Maaten, “Bounding training data reconstruction in private (deep) learning,” in International Conference on Machine Learning.   PMLR, 2022, pp. 8056–8071.
  11. P. Stock, I. Shilov, I. Mironov, and A. Sablayrolles, “Defending against reconstruction attacks with r\\\backslash\’enyi differential privacy,” arXiv preprint arXiv:2202.07623, 2022.
  12. Z. Wang, J. Lee, and Q. Lei, “Reconstructing training data from model gradient, provably,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2023, pp. 6595–6612.
  13. Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep learning via additively homomorphic encryption,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.
  14. Y. Wang, J. Deng, D. Guo, C. Wang, X. Meng, H. Liu, C. Ding, and S. Rajasekaran, “Sapag: A self-adaptive privacy attack from gradients,” arXiv preprint arXiv:2009.06228, 2020.
  15. J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it to break privacy in federated learning?” Advances in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947, 2020.
  16. W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and Y. Wu, “A framework for evaluating gradient leakage attacks in federated learning,” arXiv preprint arXiv:2004.10397, 2020.
  17. M. Balunovic, D. I. Dimitrov, R. Staab, and M. Vechev, “Bayesian framework for gradient leakage,” in International Conference on Learning Representations, 2021.
  18. N. Haim, G. Vardi, G. Yehudai, O. Shamir, and M. Irani, “Reconstructing training data from trained neural networks,” arXiv preprint arXiv:2206.07758, 2022.
  19. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for federated learning on user-held data,” arXiv preprint arXiv:1611.04482, 2016.
  20. ——, “Practical secure aggregation for privacy-preserving machine learning,” in proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1175–1191.
  21. R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client level perspective,” arXiv preprint arXiv:1712.07557, 2017.
  22. K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.
  23. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.
  24. X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back propagation for accelerated deep learning with reduced overfitting,” in International Conference on Machine Learning.   PMLR, 2017, pp. 3299–3308.
  25. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.
  26. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9446–9454.
  27. C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” The annals of Statistics, pp. 1135–1151, 1981.
  28. K. Mamis, “Extension of stein’s lemma derived by using an integration by differentiation technique,” Examples and Counterexamples, vol. 2, p. 100077, 2022.
  29. R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, 2015, pp. 1310–1321.
  30. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
  31. S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent with differentially private updates,” in 2013 IEEE global conference on signal and information processing.   IEEE, 2013, pp. 245–248.
  32. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
  33. X. Ye, P. Dai, J. Luo, X. Guo, Y. Qi, J. Yang, and Y. Chen, “Accelerating cnn training by pruning activation gradients,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16.   Springer, 2020, pp. 322–338.
  34. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  35. T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications,” arXiv preprint arXiv:1701.05517, 2017.
  36. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  37. T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate training of deep neural networks,” Advances in neural information processing systems, vol. 29, 2016.
  38. Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
  39. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.
  40. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 586–595.
  41. K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon, “Recovery guarantees for one-hidden-layer neural networks,” in International conference on machine learning.   PMLR, 2017, pp. 4140–4149.
  42. V. Kuleshov, A. Chaganty, and P. Liang, “Tensor factorization via matrix factorization,” in Artificial Intelligence and Statistics.   PMLR, 2015, pp. 507–516.
  43. S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016.
  44. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR 2015, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: