Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

At the end of the spectrum: Chromatic bounds for the largest eigenvalue of the normalized Laplacian (2402.09160v3)

Published 14 Feb 2024 in math.CO and math.SP

Abstract: For a graph with largest normalized Laplacian eigenvalue $\lambda_N$ and (vertex) coloring number $\chi$, it is known that $\lambda_N\geq \chi/(\chi-1)$. Here we prove properties of graphs for which this bound is sharp, and we study the multiplicity of $\chi/(\chi-1)$. We then describe a family of graphs with largest eigenvalue $\chi/(\chi-1)$. We also study the spectrum of the $1$-sum of two graphs (also known as graph joining or coalescing), with a focus on the maximal eigenvalue. Finally, we give upper bounds on $\lambda_N$ in terms of $\chi$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: