Papers
Topics
Authors
Recent
Search
2000 character limit reached

Into the Unknown: Self-Learning Large Language Models

Published 14 Feb 2024 in cs.AI | (2402.09147v4)

Abstract: We address the main problem of self-learning LLM: the question of what to learn. We propose a self-learning LLM framework that enables an LLM to independently learn previously unknown knowledge through self-assessment of their own hallucinations. We introduce a concept called Point in the Unknown (PiU) to identify atomic knowledge unknown to a model, along with four methods for automatic PiUs identification, facilitating the creation of a self-learning loop that focuses exclusively on the absorption of currently unknown knowledge into the model. Additionally, we developed evaluation metrics to gauge an LLM's self-learning capability. Our experiments revealed that LLMs with at least 3B parameters that have undergone some instruction training would be able to perform self-learning well. We further proved the effectiveness of self-learning by comparing the performance of a model that has undergone self-learning to a model that has not. Our self-learning concept allows more efficient LLM updates and opens new perspectives for LLM knowledge exchange.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 10 tweets with 86 likes about this paper.