Into the Unknown: Self-Learning Large Language Models (2402.09147v4)
Abstract: We address the main problem of self-learning LLM: the question of what to learn. We propose a self-learning LLM framework that enables an LLM to independently learn previously unknown knowledge through self-assessment of their own hallucinations. We introduce a concept called Point in the Unknown (PiU) to identify atomic knowledge unknown to a model, along with four methods for automatic PiUs identification, facilitating the creation of a self-learning loop that focuses exclusively on the absorption of currently unknown knowledge into the model. Additionally, we developed evaluation metrics to gauge an LLM's self-learning capability. Our experiments revealed that LLMs with at least 3B parameters that have undergone some instruction training would be able to perform self-learning well. We further proved the effectiveness of self-learning by comparing the performance of a model that has undergone self-learning to a model that has not. Our self-learning concept allows more efficient LLM updates and opens new perspectives for LLM knowledge exchange.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.