Papers
Topics
Authors
Recent
2000 character limit reached

Global controllability to harmonic maps of the heat flow from a circle to a sphere

Published 14 Feb 2024 in math.AP and math.OC | (2402.08990v1)

Abstract: In this paper, we study the global controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we also discover the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding problem for the nonlinear heat equations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.