Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Switchable optical trapping of Mie-resonant phase-change nanoparticles (2402.08947v2)

Published 14 Feb 2024 in physics.optics

Abstract: Optical tweezers revolutionized the manipulation of nanoscale objects. Typically, tunable manipulations of optical tweezers rely on adjusting either the trapping laser beams or the optical environment surrounding the nanoparticles. We present a novel approach to achieve tunable and switchable trapping using nanoparticles made of a phase-change material (vanadium dioxide or VO$_2$). By varying the intensity of the trapping beam, we induce transitions of the VO$_2$ between monoclinic and rutile phases. Depending on the nanoparticles' sizes, they exhibit one of three behaviours: small nanoparticles (in our settings, radius $<0.12$ wavelength $\lambda$) remain always attracted by the laser beam in both material phases, large nanoparticles ($>0.22 \lambda$) remain always repelled. However, within the size range of $0.12$-$0.22 \lambda$, the phase transition of the VO$_2$ switches optical forces between attractive and repulsive, thereby pulling/pushing them towards/away from the beam centre. The effect is reversible, allowing the same particle to be attracted and repelled repeatedly. The phenomenon is governed by Mie resonances supported by the nanoparticle and their alterations during the phase transition of the VO$_2$. This work provides an alternative solution for dynamic optical tweezers and paves a way to new possibilities, including optical sorting, light-driven optomechanics and single-molecule biophysics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. S. B. Wang and C. T. Chan, Lateral optical force on chiral particles near a surface, Nat. Commun. 5, 1 (2014).
  2. S. H. Simpson and S. Hanna, Orbital motion of optically trapped particles in Laguerre–Gaussian beams, J. Opt. Soc. Am. A, JOSAA 27, 2061 (2010).
  3. S. Ghosh and A. Ghosh, Next-Generation Optical Nanotweezers for Dynamic Manipulation: From Surface to Bulk, Langmuir 36, 5691 (2020).
  4. F. Nan and Z. Yan, Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces, Nano Lett. 18, 4500 (2018).
  5. X. Tang, Y. Xu, and Z. Yan, Tunable optical tweezers by dynamically sculpting the phase profiles of light, Appl. Phys. Express 14, 022009 (2021).
  6. I. D. Toftul, D. F. Kornovan, and M. I. Petrov, Self-Trapped Nanoparticle Binding via Waveguide Mode, ACS Photonics 7, 114 (2020).
  7. N. Paul and J. Gomez-Diaz, Tunable optical traps over nonreciprocal surfaces, Optics Express 30, 46344 (2022).
  8. H. Qin, W. Redjem, and B. Kante, Tunable and enhanced optical force with bound state in the continuum, Optics Letters 47, 1774 (2022).
  9. Y. Jiang, T. Narushima, and H. Okamoto, Nonlinear optical effects in trapping nanoparticles with femtosecond pulses, Nat. Phys. 6, 1005 (2010).
  10. A. Ashkin and J. M. Dziedzic, Observation of Resonances in the Radiation Pressure on Dielectric Spheres, Phys. Rev. Lett. 38, 1351 (1977).
  11. Y. Jiang, J. Ng, and Z. Lin, Ab initio derivation of multipolar expansion of optical force, arXiv 10.48550/arXiv.1512.04201 (2015), 1512.04201 .
  12. R. W. Bowman and M. J. Padgett, Optical trapping and binding, Rep. Prog. Phys. 76, 026401 (2013).
  13. S. Gladyshev, K. Frizyuk, and A. Bogdanov, Symmetry analysis and multipole classification of eigenmodes in electromagnetic resonators for engineering their optical properties, Phys. Rev. B 102, 075103 (2020).
  14. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, Exact Multipolar Decompositions with Applications in Nanophotonics, Adv. Opt. Mater. 7, 1800783 (2019).
  15. J. Rheims, J. Köser, and T. Wriedt, Refractive-index measurements in the near-IR using an Abbe refractometer, Meas. Sci. Technol. 8, 601 (1997).
  16. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer International Publishing, Cham, Switzerland).
  17. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series (Wiley, 2008).
  18. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  19. X.-Y. Duan and Z.-G. Wang, Fano resonances in the optical scattering force upon a high-index dielectric nanoparticle, Phys. Rev. A 96, 053811 (2017).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com