Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deriving the Gibbons-Maldacena-Nunez no-go theorem from the Raychaudhuri equation (2402.08805v1)

Published 13 Feb 2024 in hep-th

Abstract: In this article, we point out that to solve the null Raychaudhuri equation for higher dimensional spacetime with accelerating FRW solution in external directions and static compact internal directions, it is necessary to violate the Strong Energy condition in higher dimensions. This constraint is well-known in obtaining accelerating cosmological solutions in string compactification, first described by Gibbons-Maldacena-Nunez. In deriving this constraint, we do not make any assumptions regarding the matter content.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. U. H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27, 1830007 (2018), arXiv:1804.01120 [hep-th] .
  2. G. W. Gibbons, Thoughts on tachyon cosmology, Class. Quant. Grav. 20, S321 (2003), arXiv:hep-th/0301117 .
  3. J. M. Maldacena and C. Nunez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16, 822 (2001), arXiv:hep-th/0007018 .
  4. M. Graña and A. Herráez, The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics, Universe 7, 273 (2021), arXiv:2107.00087 [hep-th] .
  5. G. W. Gibbons, Aspects of Supergravity Theories, in Supersymmetry and Supergravity and Related topics, edited by F. del Aguilla, A. Azcarrage and L. E. Ibanez (World Scientific, 1985).
  6. R. Koster and M. Postma, A no-go for no-go theorems prohibiting cosmic acceleration in extra dimensional models, JCAP 12, 015, arXiv:1110.1492 [hep-th] .
  7. D. H. Wesley, Oxidised cosmic acceleration, JCAP 01, 041, arXiv:0802.3214 [hep-th] .
  8. P. J. Steinhardt and D. Wesley, Dark Energy, Inflation and Extra Dimensions, Phys. Rev. D 79, 104026 (2009), arXiv:0811.1614 [hep-th] .
  9. M. Parikh, Two Roads to the Null Energy Condition, Int. J. Mod. Phys. D 24, 1544030 (2015), arXiv:1512.03448 [hep-th] .
  10. M. Parikh and J. P. van der Schaar, Derivation of the Null Energy Condition, Phys. Rev. D 91, 084002 (2015), arXiv:1406.5163 [hep-th] .
  11. M. Parikh and A. Svesko, Logarithmic corrections to gravitational entropy and the null energy condition, Phys. Lett. B 761, 16 (2016), arXiv:1612.06949 [hep-th] .
  12. M. Parikh and A. Svesko, Thermodynamic Origin of the Null Energy Condition, Phys. Rev. D 95, 104002 (2017), arXiv:1511.06460 [hep-th] .
  13. J. G. Russo and P. K. Townsend, Late-time Cosmic Acceleration from Compactification, Class. Quant. Grav. 36, 095008 (2019a), arXiv:1811.03660 [hep-th] .
  14. J. G. Russo and P. K. Townsend, Time-dependent compactification to de Sitter space: a no-go theorem, JHEP 06, 097, arXiv:1904.11967 [hep-th] .
  15. H. Bernardo, S. Brahma, and M. M. Faruk, The inheritance of energy conditions: Revisiting no-go theorems in string compactifications,  (2022), arXiv:2208.09341 [hep-th] .
  16. G. B. De Luca, E. Silverstein, and G. Torroba, Hyperbolic compactification of M-theory and de Sitter quantum gravity, SciPost Phys. 12, 083 (2022), arXiv:2104.13380 [hep-th] .
  17. I. Basile and S. Lanza, de Sitter in non-supersymmetric string theories: no-go theorems and brane-worlds, JHEP 10, 108, arXiv:2007.13757 [hep-th] .
  18. T. Anous, D. Z. Freedman, and A. Maloney, de Sitter Supersymmetry Revisited, JHEP 07, 119, arXiv:1403.5038 [hep-th] .
  19. I. Basile, Supersymmetry breaking, brane dynamics and Swampland conjectures, JHEP 10, 080, arXiv:2106.04574 [hep-th] .
  20. P. K. Townsend and M. N. R. Wohlfarth, Accelerating cosmologies from compactification, Phys. Rev. Lett. 91, 061302 (2003), arXiv:hep-th/0303097 .
  21. E. Teo, A No-go theorem for accelerating cosmologies from M-theory compactifications, Phys. Lett. B 609, 181 (2005), arXiv:hep-th/0412164 .
  22. M. N. R. Wohlfarth, Accelerating cosmologies and a phase transition in M theory, Phys. Lett. B 563, 1 (2003), arXiv:hep-th/0304089 .
  23. S. Roy, Accelerating cosmologies from M / string theory compactifications, Phys. Lett. B 567, 322 (2003), arXiv:hep-th/0304084 .
  24. P. Marconnet and D. Tsimpis, Universal accelerating cosmologies from 10d supergravity, JHEP 01, 033, arXiv:2210.10813 [hep-th] .
  25. J. G. Russo and P. K. Townsend, A dilaton-axion model for string cosmology, JHEP 06, 001, arXiv:2203.09398 [hep-th] .
  26. L. Cornalba and M. S. Costa, A New cosmological scenario in string theory, Phys. Rev. D 66, 066001 (2002), arXiv:hep-th/0203031 .
  27. S. Ferrara, M. Tournoy, and A. Van Proeyen, de Sitter Conjectures in N𝑁Nitalic_N=1 Supergravity, Fortsch. Phys. 68, 1900107 (2020), arXiv:1912.06626 [hep-th] .
  28. C. Kounnas and N. Toumbas, Aspects of String Cosmology, PoS Corfu2012, 083 (2013), arXiv:1305.2809 [hep-th] .
  29. P. K. Townsend and M. N. R. Wohlfarth, Cosmology as geodesic motion, Class. Quant. Grav. 21, 5375 (2004), arXiv:hep-th/0404241 .
  30. M. Emelin, Effective Theories as Truncated Trans-Series and Scale Separated Compactifications, JHEP 11, 144, arXiv:2005.11421 [hep-th] .
  31. D. Klemm and L. Vanzo, Aspects of quantum gravity in de Sitter spaces, JCAP 11, 006, arXiv:hep-th/0407255 .
  32. E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference (2001) arXiv:hep-th/0106109 .
  33. N. Goheer, M. Kleban, and L. Susskind, The Trouble with de Sitter space, JHEP 07, 056, arXiv:hep-th/0212209 .
  34. T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75, 1260 (1995), arXiv:gr-qc/9504004 .
  35. C. Eling, R. Guedens, and T. Jacobson, Non-equilibrium thermodynamics of spacetime, Phys. Rev. Lett. 96, 121301 (2006), arXiv:gr-qc/0602001 .
  36. S. Kar and S. SenGupta, The Raychaudhuri equations: A Brief review, Pramana 69, 49 (2007), arXiv:gr-qc/0611123 .
  37. T. Jacobson, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett. 116, 201101 (2016), arXiv:1505.04753 [gr-qc] .
  38. G. Chirco and S. Liberati, Non-equilibrium Thermodynamics of Spacetime: The Role of Gravitational Dissipation, Phys. Rev. D 81, 024016 (2010), arXiv:0909.4194 [gr-qc] .
  39. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  40. S. W. Hawking and R. Penrose, The Singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A 314, 529 (1970).
  41. E. Alvarez and C. Gomez, Holography and the C theorem, PoS tmr2000, 004 (2000), arXiv:hep-th/0009203 .
  42. S. Das, Quantum Raychaudhuri equation, Phys. Rev. D 89, 084068 (2014), arXiv:1311.6539 [gr-qc] .
  43. S. Das, S. S. Haque, and B. Underwood, Constraints and horizons for de Sitter with extra dimensions, Phys. Rev. D 100, 046013 (2019), arXiv:1905.05864 [hep-th] .
  44. Third paragraph of page 2 of ref. [60].
  45. N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1982).
  46. S. B. Giddings, S. Kachru, and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66, 106006 (2002), arXiv:hep-th/0105097 .
  47. A. Linde, KKLT without AdS, JHEP 05, 076, arXiv:2002.01500 [hep-th] .
  48. We express our gratitude to the referee for assisting us in clarifying this issue.
  49. Interested readers please look into[78].
  50. Thanks to the referees for pointing it out.
  51. We have also used a known mathematical identity (D−2)⁢∂pln⁡Ω⁢∂pln⁡Ω+□⁢ln⁡Ω=□⁢ΩD−2(D−2)⁢ΩD−2𝐷2subscript𝑝Ωsuperscript𝑝Ω□Ω□superscriptΩ𝐷2𝐷2superscriptΩ𝐷2(D-2)\partial_{p}\ln\Omega\partial^{p}\ln\Omega+\Box\ln\Omega=\frac{\Box\Omega% ^{D-2}}{(D-2)\Omega^{D-2}}( italic_D - 2 ) ∂ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT roman_ln roman_Ω ∂ start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT roman_ln roman_Ω + □ roman_ln roman_Ω = divide start_ARG □ roman_Ω start_POSTSUPERSCRIPT italic_D - 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_D - 2 ) roman_Ω start_POSTSUPERSCRIPT italic_D - 2 end_POSTSUPERSCRIPT end_ARG, also appeared in eq.(33) of [3].
  52. S. Chatterjee, M. Parikh, and J. P. van der Schaar, On Coupling NEC-Violating Matter to Gravity, Phys. Lett. B 744, 34 (2015), arXiv:1503.07950 [hep-th] .
  53. I. Sawicki and A. Vikman, Hidden Negative Energies in Strongly Accelerated Universes, Phys. Rev. D 87, 067301 (2013), arXiv:1209.2961 [astro-ph.CO] .
  54. G. Dvali, C. Gomez, and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys. 67, 1800094 (2019), arXiv:1810.11002 [hep-th] .
  55. A. Bedroya and C. Vafa, Trans-Planckian Censorship and the Swampland, JHEP 09, 123, arXiv:1909.11063 [hep-th] .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: