Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On a Ramanujan-type series associated with the Heegner number 163 (2402.08485v1)

Published 13 Feb 2024 in math.NT

Abstract: Using the Wolfram NumberTheory package and the Recognize command, together with numerical estimates involving the elliptic lambda and elliptic alpha functions, Bagis and Glasser, in 2013, introduced a conjectural Ramanujan-type series related to the class number $h(-d) = 1$ for a quadratic form with discriminant $d = 163$. This conjectured series is of level one and has positive terms, and recalls the Chudnovsky brothers' alternating series of the same level, given the connection between the Chudnovsky-Chudnovsky formula and the Heegner number $d = 163$ such that $\mathbb{Q}\left( \sqrt{-d} \right)$ has class number one. We prove Bagis and Glasser's conjecture by proving evaluations for $\lambda{\ast}(163)$ and $\alpha(163)$, which we derive using the Chudnovsky brothers' formula together with the analytic continuation of a formula due to the Borwein brothers for Ramanujan-type series of level one. As a byproduct of our method, we obtain an infinite family of Ramanujan-type series for $\frac{1}{\pi}$ generalizing the Chudnovsky algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.