Papers
Topics
Authors
Recent
2000 character limit reached

Noise Aware Utility Optimization of NISQ Devices (2402.08226v2)

Published 13 Feb 2024 in quant-ph

Abstract: In order to enter the era of utility, noisy intermediate-scale quantum (NISQ) devices need to enable long-range entanglement of large qubit chains. However, due to the limited connectivity of superconducting NISQ devices, long-range entangling gates are realized in linear depth. Furthermore, a time-dependent degradation of the average CNOT gate fidelity is observed. Likely due to aging, this phenomenon further degrades entanglement capabilities. Our aim is to help in the current efforts to achieve utility and provide an opportunity to extend the utility lifespan of current devices --albeit by selecting fewer, high quality resources. To achieve this, we provide a method to transform user-provided CNOT and readout error requirements into a compliant partition onto which circuits can be executed. We demonstrate an improvement of up to 52% in fidelity for a random CNOT chain of length 50 qubits and consistent improvements between 11.8% and 47.7% for chains between 10 and 40 in varying in increments of 10, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982. [Online]. Available: https://www.nature.com/articles/299802a0
  2. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://quantum-journal.org/papers/q-2018-08-06-79/
  3. G. De Micheli, J.-H. R. Jiang, R. Rand, K. Smith, and M. Soeken, “Advances in Quantum Computation and Quantum Technologies: A Design Automation Perspective,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 12, no. 3, pp. 584–601, Sep. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9881555/
  4. B. Nachman, M. Urbanek, W. A. De Jong, and C. W. Bauer, “Unfolding quantum computer readout noise,” npj Quantum Information, vol. 6, no. 1, p. 84, Sep. 2020. [Online]. Available: https://www.nature.com/articles/s41534-020-00309-7
  5. J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, and J. Bylander, “Decoherence benchmarking of superconducting qubits,” npj Quantum Information, vol. 5, no. 1, p. 54, Jun. 2019. [Online]. Available: https://www.nature.com/articles/s41534-019-0168-5
  6. S. Schlör, J. Lisenfeld, C. Müller, A. Bilmes, A. Schneider, D. P. Pappas, A. V. Ustinov, and M. Weides, “Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators,” Physical Review Letters, vol. 123, no. 19, p. 190502, Nov. 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.123.190502
  7. S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Crossman, N. Didier, A. M. Polloreno, E. A. Sete, S. W. Turkowski, M. P. Da Silva, and B. R. Johnson, “Demonstration of a parametrically activated entangling gate protected from flux noise,” Physical Review A, vol. 101, no. 1, p. 012302, Jan. 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.101.012302
  8. M. Treinish, “Qiskit/qiskit-metapackage: Qiskit 0.44.0,” Jul. 2023. [Online]. Available: https://zenodo.org/record/2573505
  9. P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems.   Providence RI USA: ACM, Apr. 2019, pp. 1015–1029. [Online]. Available: https://dl.acm.org/doi/10.1145/3297858.3304075
  10. N. Quetschlich, L. Burgholzer, and R. Wille, “Compiler Optimization for Quantum Computing Using Reinforcement Learning,” in 2023 60th ACM/IEEE Design Automation Conference (DAC).   San Francisco, CA, USA: IEEE, Jul. 2023, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10248002/
  11. Y. Ji, S. Brandhofer, and I. Polian, “Calibration-Aware Transpilation for Variational Quantum Optimization,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).   Broomfield, CO, USA: IEEE, Sep. 2022, pp. 204–214. [Online]. Available: https://ieeexplore.ieee.org/document/9951287/
  12. P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, A. Kandala, G. A. Keefe, K. Krsulich, W. Landers, E. P. Lewandowski, D. T. McClure, G. Nannicini, A. Narasgond, H. M. Nayfeh, E. Pritchett, M. B. Rothwell, S. Srinivasan, N. Sundaresan, C. Wang, K. X. Wei, C. J. Wood, J.-B. Yau, E. J. Zhang, O. E. Dial, J. M. Chow, and J. M. Gambetta, “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, Apr. 2021. [Online]. Available: https://iopscience.iop.org/article/10.1088/2058-9565/abe519
  13. N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic, and J. M. Gambetta, “Reducing Unitary and Spectator Errors in Cross Resonance with Optimized Rotary Echoes,” PRX Quantum, vol. 1, no. 2, p. 020318, Dec. 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.1.020318
  14. M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Physical Review A, vol. 60, no. 3, pp. 1888–1898, Sep. 1999. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.60.1888
  15. M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, Oct. 2002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0375960102012720
  16. N. Quetschlich, L. Burgholzer, and R. Wille, “Predicting Good Quantum Circuit Compilation Options,” in 2023 IEEE International Conference on Quantum Software (QSW).   Chicago, IL, USA: IEEE, Jul. 2023, pp. 43–53. [Online]. Available: https://ieeexplore.ieee.org/document/10234267/
  17. H. Wang, P. Liu, J. Cheng, Z. Liang, J. Gu, Z. Li, Y. Ding, W. Jiang, Y. Shi, X. Qian, D. Z. Pan, F. T. Chong, and S. Han, “QuEst: Graph Transformer for Quantum Circuit Reliability Estimation,” 2022. [Online]. Available: https://arxiv.org/abs/2210.16724
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.