Papers
Topics
Authors
Recent
2000 character limit reached

Logarithmic negative tangency and root stacks (2402.08014v2)

Published 12 Feb 2024 in math.AG

Abstract: We study stable maps to normal crossings pairs with possibly negative tangency orders. There are two independent models: punctured Gromov-Witten theory of pairs and orbifold Gromov-Witten theory of root stacks with extremal ages. Exploiting the tropical structure of the punctured mapping space, we define and study a new virtual class for the punctured theory. This arises as a refined intersection product on the Artin fan, and produces a distinguished sector of punctured Gromov-Witten invariants. Restricting to genus zero, we show that these invariants coincide with the orbifold invariants, first for smooth pairs, and then for normal crossings pairs after passing to a sufficiently refined blowup. This builds on previous work to provide a complete picture of the logarithmic-orbifold comparison in genus zero, which is compatible with splitting and thus allows for the wholesale importation of orbifold techniques, including boundary recursion and torus localisation. Contemporaneous work of Johnston uses the comparison to give a new proof of the associativity of the Gross-Siebert intrinsic mirror ring.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. D. Abramovich. Lectures on Gromov-Witten invariants of orbifolds. In Enumerative invariants in algebraic geometry and string theory, volume 1947 of Lecture Notes in Math., pages 1–48. Springer, Berlin, 2008.
  2. D. Abramovich and Q. Chen. Stable logarithmic maps to Deligne-Faltings pairs II. Asian J. Math., 18(3):465–488, 2014.
  3. Decomposition of degenerate Gromov-Witten invariants. Compos. Math., 156(10):2020–2075, 2020.
  4. Punctured logarithmic maps (v2). arXiv e-prints, February 2021. arXiv:2009.07720v2.
  5. The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4), 48(4):765–809, 2015.
  6. Relative and orbifold Gromov-Witten invariants. Algebr. Geom., 4(4):472–500, 2017.
  7. Gromov-Witten theory of product stacks. Comm. Anal. Geom., 24(2):223–277, 2016.
  8. P. Aluffi. Segre classes as integrals over polytopes. J. Eur. Math. Soc. (JEMS), 18(12):2849–2863, 2016.
  9. Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations. Ann. Inst. Fourier (Grenoble), 64(4):1611–1667, 2014.
  10. D. Abramovich and A. Vistoli. Compactifying the space of stable maps. J. Amer. Math. Soc., 15(1):27–75, 2002.
  11. D. Abramovich and J. Wise. Birational invariance in logarithmic Gromov-Witten theory. Compos. Math., 154(3):595–620, 2018.
  12. K. Behrend. The product formula for Gromov-Witten invariants. J. Algebraic Geom., 8(3):529–541, 1999.
  13. K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45–88, 1997.
  14. L. J. Barrott and N. Nabijou. Tangent curves to degenerating hypersurfaces. J. Reine Angew. Math., 793:185–224, 2022.
  15. Curve counting in genus one: elliptic singularities and relative geometry. Algebr. Geom., 8(6):637–679, 2021.
  16. Gromov-Witten theory via roots and logarithms. arXiv e-prints, March 2022. arXiv:2203.17224. Geom. Topol., to appear.
  17. N. Borne and A. Vistoli. Parabolic sheaves on logarithmic schemes. Adv. Math., 231(3-4):1327–1363, 2012.
  18. C. Cadman. Using stacks to impose tangency conditions on curves. Amer. J. Math., 129(2):405–427, 2007.
  19. C. Cadman and L. Chen. Enumeration of rational plane curves tangent to a smooth cubic. Adv. Math., 219(1):316–343, 2008.
  20. A moduli stack of tropical curves. Forum Math. Sigma, 8:Paper No. e23, 93, 2020.
  21. Q. Chen. Stable logarithmic maps to Deligne-Faltings pairs I. Ann. of Math. (2), 180(2):455–521, 2014.
  22. Universality for tropical and logarithmic maps. arXiv e-prints, November 2022. arXiv:2211.15719. Épijournal Géom. Algébrique, to appear.
  23. W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.
  24. Structures in genus-zero relative Gromov-Witten theory. J. Topol., 13(1):269–307, 2020.
  25. Higher genus relative Gromov-Witten theory and double ramification cycles. J. Lond. Math. Soc. (2), 103(4):1547–1576, 2021.
  26. T. Graber and R. Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487–518, 1999.
  27. T. Graber. Torus localization for logarithmic stable maps. In Logarithmic enumerative geometry and mirror symmetry, volume 16, pages 1672–1674. 2019. Abstracts from the workshop held June 16–22, 2019, Organized by Dan Abramovich, Michel van Garrel and Helge Ruddat.
  28. M. Gross and B. Siebert. Logarithmic Gromov-Witten invariants. J. Amer. Math. Soc., 26(2):451–510, 2013.
  29. M. Gross and B. Siebert. Intrinsic mirror symmetry and punctured Gromov-Witten invariants. In Algebraic geometry: Salt Lake City 2015, volume 97 of Proc. Sympos. Pure Math., pages 199–230. Amer. Math. Soc., Providence, RI, 2018.
  30. M. Gross and B. Siebert. Intrinsic Mirror Symmetry. arXiv e-prints, September 2019. arXiv:1909.07649.
  31. Models of Jacobians of curves. J. Reine Angew. Math., 801:115–159, 2023.
  32. P. Johnson. Equivariant Gromov-Witten theory of one dimensional stacks. ProQuest LLC, Ann Arbor, MI, 2009. Ph.D. Thesis, University of Michigan.
  33. S. Johnston. Birational Invariance in Punctured Log Gromov-Witten Theory. arXiv e-prints, October 2022. arXiv:2210.06079.
  34. S. Johnston. Intrinsic mirror symmetry and Frobenius structure theorem via Gromov-Witten theory of root stacks. arXiv e-prints, March 2024. arXiv:2403.05376.
  35. Divisors and curves on logarithmic mapping spaces. arXiv e-prints, September 2022. arXiv:2209.00630.
  36. C. Manolache. Virtual pull-backs. J. Algebraic Geom., 21(2):201–245, 2012.
  37. S. Molcho. Universal stacky semistable reduction. Isr. J. Math., 2021.
  38. S. Molcho and D. Ranganathan. A case study of intersections on blowups of the moduli of curves. arXiv e-prints, June 2021. arXiv:2106.15194. Alg. Num. Th., to appear.
  39. T. Oda. Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese.
  40. M. Olsson. Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4), 36(5):747–791, 2003.
  41. M. Olsson. (Log) twisted curves. Compos. Math., 143(2):476–494, 2007.
  42. D. Ranganathan. Logarithmic Gromov-Witten theory with expansions. Algebr. Geom., 9(6):714–761, 2022.
  43. Moduli of stable maps in genus one and logarithmic geometry, I. Geom. Topol., 23(7):3315–3366, 2019.
  44. H.-H. Tseng and F. You. Higher genus relative and orbifold Gromov-Witten invariants. Geom. Topol., 24(6):2749–2779, 2020.
  45. H.-H. Tseng and F. You. A Gromov-Witten theory for simple normal-crossing pairs without log geometry. Comm. Math. Phys., 401(1):803–839, 2023.
  46. R. Vakil. Murphy’s law in algebraic geometry: badly-behaved deformation spaces. Invent. Math., 164(3):569–590, 2006.
  47. Gromov-Witten theory of bicyclic pairs. arXiv e-prints, October 2023. arXiv:2310.06058.
  48. F. You. The proper Landau–Ginzburg potential, intrinsic mirror symmetry and the relative mirror map. arXiv e-prints, September 2022. arXiv:2209.15371.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.