Particle spectra of general Ricci-type Palatini or metric-affine theories (2402.07641v2)
Abstract: In the context of weak-field metric-affine (i.e. Palatini) gravity near Minkowski spacetime, we compute the particle spectra in the simultaneous presence of all independent contractions quadratic in Ricci-type tensors. Apart from the full metric-affine geometry, we study kinematic limits with vanishing torsion (i.e. a symmetric connection) and vanishing non-metricity (i.e. a metric connection, which is physically indistinguishable from Poincar\'e gauge theory at the level of the particle spectrum). We present a detailed report on how spin-parity projection operators can be used to derive systematically and unambiguously the character of the propagating states. The unitarity constraints derived from the requirements of tachyon- and ghost-freedom are obtained. We show that, even in the presence of all Ricci-type operators, only a narrow selection of viable theories emerges by a tuning.
- A. Salvio and A. Strumia, Agravity, JHEP 06, 080, arXiv:1403.4226 [hep-ph] .
- K. S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16, 953 (1977).
- D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06, 086, arXiv:1704.07728 [hep-th] .
- D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06, 066, arXiv:1703.04584 [hep-th] .
- N. Ohta and R. Percacci, Ultraviolet Fixed Points in Conformal Gravity and General Quadratic Theories, Class. Quant. Grav. 33, 035001 (2016), arXiv:1506.05526 [hep-th] .
- R. Percacci and O. Zanusso, One loop beta functions and fixed points in Higher Derivative Sigma Models, Phys. Rev. D 81, 065012 (2010), arXiv:0910.0851 [hep-th] .
- C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008), arXiv:0706.0207 [hep-th] .
- P. D. Mannheim, Making the Case for Conformal Gravity, Found. Phys. 42, 388 (2012), arXiv:1101.2186 [hep-th] .
- J. F. Donoghue and G. Menezes, On quadratic gravity, Nuovo Cim. C 45, 26 (2022), arXiv:2112.01974 [hep-th] .
- J. F. Donoghue and G. Menezes, Ostrogradsky instability can be overcome by quantum physics, Phys. Rev. D 104, 045010 (2021), arXiv:2105.00898 [hep-th] .
- G. K. Karananas, M. Shaposhnikov, and S. Zell, Scale invariant Einstein-Cartan gravity and flat space conformal symmetry, JHEP 11, 171, arXiv:2307.11151 [hep-th] .
- D. Iosifidis, Metric-Affine Cosmologies: kinematics of Perfect (Ideal) Cosmological Hyperfluids and first integrals, JCAP 09, 045, arXiv:2301.09868 [gr-qc] .
- I. L. Shapiro, Physical aspects of the space-time torsion, Phys. Rept. 357, 113 (2002), arXiv:hep-th/0103093 .
- V. Mondal and S. Chakraborty, Lorentzian quantum cosmology with torsion, (2023), arXiv:2305.01690 [gr-qc] .
- C. Rigouzzo and S. Zell, Coupling metric-affine gravity to the standard model and dark matter fermions, Phys. Rev. D 108, 124067 (2023), arXiv:2306.13134 [gr-qc] .
- I. V. Fomin, S. V. Chervon, and K. A. Bolshakova, Modified inflationary models based on scalar-torsion gravity, (2023), arXiv:2312.01142 [gr-qc] .
- M. Gonzalez-Espinoza and G. Otalora, Cosmological dynamics of dark energy in scalar-torsion f(T,ϕ)𝑓𝑇italic-ϕf(T,\phi)italic_f ( italic_T , italic_ϕ ) gravity, Eur. Phys. J. C 81, 480 (2021), arXiv:2011.08377 [gr-qc] .
- H. I. Arcos and J. G. Pereira, Torsion gravity: A Reappraisal, Int. J. Mod. Phys. D 13, 2193 (2004), arXiv:gr-qc/0501017 .
- G. K. Karananas, On the strong-CP problem and its axion solution in torsionful theories, Eur. Phys. J. C 78, 480 (2018), arXiv:1805.08781 [hep-th] .
- I. D. Gialamas and K. Tamvakis, Inflation in metric-affine quadratic gravity, JCAP 03, 042, arXiv:2212.09896 [gr-qc] .
- Y. Mikura, Y. Tada, and S. Yokoyama, Conformal inflation in the metric-affine geometry, EPL 132, 39001 (2020), arXiv:2008.00628 [hep-th] .
- K. Shimada, K. Aoki, and K.-i. Maeda, Metric-affine Gravity and Inflation, Phys. Rev. D 99, 104020 (2019), arXiv:1812.03420 [gr-qc] .
- H. Azri and D. Demir, Induced Affine Inflation, Phys. Rev. D 97, 044025 (2018), arXiv:1802.00590 [gr-qc] .
- D. Iosifidis, R. Myrzakulov, and L. Ravera, Cosmology of Metric-Affine R+β𝛽\betaitalic_βR2 Gravity with Pure Shear Hypermomentum, Fortsch. Phys. 72, 2300003 (2024), arXiv:2301.00669 [gr-qc] .
- C. Dioguardi, A. Racioppi, and E. Tomberg, Slow-roll inflation in Palatini F(R) gravity, JHEP 06, 106, arXiv:2112.12149 [gr-qc] .
- C. Dioguardi, A. Racioppi, and E. Tomberg, Beyond (and back to) Palatini quadratic gravity and inflation, (2022b), arXiv:2212.11869 [gr-qc] .
- C. Dioguardi and A. Racioppi, Palatini F(R,X)𝐹𝑅𝑋F(R,X)italic_F ( italic_R , italic_X ): a new framework for inflationary attractors, (2023), arXiv:2307.02963 [gr-qc] .
- R. Percacci and E. Sezgin, New class of ghost- and tachyon-free metric affine gravities, Phys. Rev. D 101, 084040 (2020), arXiv:1912.01023 [hep-th] .
- J. Beltrán Jiménez and A. Delhom, Ghosts in metric-affine higher order curvature gravity, Eur. Phys. J. C 79, 656 (2019), arXiv:1901.08988 [gr-qc] .
- A. Baldazzi, O. Melichev, and R. Percacci, Metric-Affine Gravity as an effective field theory, Annals Phys. 438, 168757 (2022), arXiv:2112.10193 [gr-qc] .
- D. E. Neville, A Gravity Lagrangian With Ghost Free Curvature**2 Terms, Phys. Rev. D 18, 3535 (1978).
- D. E. Neville, Gravity Theories With Propagating Torsion, Phys. Rev. D 21, 867 (1980).
- H. B. Nezhad and S. Rasanen, Scalar fields with derivative coupling to curvature in the Palatini and the metric formulation, JCAP 02, 009, arXiv:2307.04618 [gr-qc] .
- J. Annala and S. Rasanen, Stability of non-degenerate Ricci-type Palatini theories, JCAP 04, 014, [Erratum: JCAP 08, E02 (2023)], arXiv:2212.09820 [gr-qc] .
- S. Rasanen and Y. Verbin, Palatini formulation for gauge theory: implications for slow-roll inflation 10.21105/astro.2211.15584 (2022), arXiv:2211.15584 [astro-ph.CO] .
- A. Ito, W. Khater, and S. Rasanen, Tree-level unitarity in Higgs inflation in the metric and the Palatini formulation, JHEP 06, 164, arXiv:2111.05621 [astro-ph.CO] .
- J. Annala and S. Rasanen, Inflation with R (α𝛼\alphaitalic_αβ𝛽\betaitalic_β) terms in the Palatini formulation, JCAP 09, 032, arXiv:2106.12422 [astro-ph.CO] .
- S. Rasanen, Higgs inflation in the Palatini formulation with kinetic terms for the metric, Open J. Astrophys. 2, 1 (2019), arXiv:1811.09514 [gr-qc] .
- S. Rasanen and P. Wahlman, Higgs inflation with loop corrections in the Palatini formulation, JCAP 11, 047, arXiv:1709.07853 [astro-ph.CO] .
- O. I. Melichev, Quantum Aspects of Metric-Affine Gravity, Ph.D. thesis, SISSA (2023).
- Y. Mikura and R. Percacci, Some simple theories of gravity with propagating nonmetricity, (2024), arXiv:2401.10097 [gr-qc] .
- Y. Mikura, V. Naso, and R. Percacci, Some simple theories of gravity with propagating torsion, (2023), arXiv:2312.10249 [gr-qc] .
- R. Percacci, Towards Metric-Affine Quantum Gravity, Int. J. Geom. Meth. Mod. Phys. 17, 2040003 (2020), arXiv:2003.09486 [gr-qc] .
- Y. Mikura, Y. Tada, and S. Yokoyama, Minimal k𝑘kitalic_k-inflation in light of the conformal metric-affine geometry, Phys. Rev. D 103, L101303 (2021), arXiv:2103.13045 [hep-th] .
- Y. Mikura and Y. Tada, On UV-completion of Palatini-Higgs inflation, JCAP 05 (05), 035, arXiv:2110.03925 [hep-ph] .
- M. He, Y. Mikura, and Y. Tada, Hybrid metric-Palatini Higgs inflation, JCAP 05, 047, arXiv:2209.11051 [hep-th] .
- P. Van Nieuwenhuizen, On ghost-free tensor lagrangians and linearized gravitation, Nucl. Phys. B 60, 478 (1973).
- E. Sezgin and P. van Nieuwenhuizen, New Ghost Free Gravity Lagrangians with Propagating Torsion, Phys. Rev. D 21, 3269 (1980).
- E. Sezgin, Class of Ghost Free Gravity Lagrangians With Massive or Massless Propagating Torsion, Phys. Rev. D 24, 1677 (1981).
- C. Marzo, Radiatively stable ghost and tachyon freedom in metric affine gravity, Phys. Rev. D 106, 024045 (2022a), arXiv:2110.14788 [hep-th] .
- G. K. Karananas, The particle spectrum of parity-violating Poincaré gravitational theory, Class. Quant. Grav. 32, 055012 (2015), arXiv:1411.5613 [gr-qc] .
- Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Ghost and tachyon free Poincaré gauge theories: A systematic approach, Phys. Rev. D 99, 064001 (2019), arXiv:1812.02675 [gr-qc] .
- Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Ghost- and tachyon-free Weyl gauge theories: A systematic approach, Phys. Rev. D 104, 024034 (2021), arXiv:2005.02228 [gr-qc] .
- W. Barker and S. Zell, Einstein-Proca theory from the Einstein-Cartan formulation, Phys. Rev. D 109, 024007 (2024), arXiv:2306.14953 [hep-th] .
- V. Vitagliano, T. P. Sotiriou, and S. Liberati, The dynamics of generalized Palatini Theories of Gravity, Phys. Rev. D 82, 084007 (2010), arXiv:1007.3937 [gr-qc] .
- G. Allemandi, A. Borowiec, and M. Francaviglia, Accelerated cosmological models in Ricci squared gravity, Phys. Rev. D 70, 103503 (2004), arXiv:hep-th/0407090 .
- B. Li, J. D. Barrow, and D. F. Mota, The Cosmology of Ricci-Tensor-Squared gravity in the Palatini variational approach, Phys. Rev. D 76, 104047 (2007), arXiv:0707.2664 [gr-qc] .
- G. J. Olmo, H. Sanchis-Alepuz, and S. Tripathi, Dynamical Aspects of Generalized Palatini Theories of Gravity, Phys. Rev. D 80, 024013 (2009), arXiv:0907.2787 [gr-qc] .
- C. Barragan and G. J. Olmo, Isotropic and Anisotropic Bouncing Cosmologies in Palatini Gravity, Phys. Rev. D 82, 084015 (2010), arXiv:1005.4136 [gr-qc] .
- F. Bauer, Filtering out the cosmological constant in the Palatini formalism of modified gravity, Gen. Rel. Grav. 43, 1733 (2011), arXiv:1007.2546 [gr-qc] .
- W. Barker and C. Marzo, Particle Spectrum for any tensor Lagrangian (PSALTer) — in prep, (2024).
- W. Barker, Particle spectra of gravity based on internal symmetry of quantum fields, (2023a), arXiv:2311.11790 [hep-th] .
- M. Partanen and J. Tulkki, Gravity based on internal symmetry of quantum fields, (2023a), arXiv:2310.01460 [gr-qc] .
- M. Partanen and J. Tulkki, QED based on eight-dimensional spinorial wave equation of the electromagnetic field and the emergence of quantum gravity, (2023b), arXiv:2310.02285 [physics.gen-ph] .
- S. Deser and R. Arnowitt, Interaction Among Gauge Vector Fields, Nucl. Phys. 49, 133 (1963).
- S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1, 9 (1970), arXiv:gr-qc/0411023 .
- J. Fang and C. Fronsdal, Deformation of Gauge Groups. Gravitation, J. Math. Phys. 20, 2264 (1979).
- R. Kuhfuss and J. Nitsch, Propagating Modes in Gauge Field Theories of Gravity, Gen. Rel. Grav. 18, 1207 (1986).
- E. L. Mendonça and R. Schimidt Bittencourt, Unitarity of Singh-Hagen model in D𝐷Ditalic_D dimensions, Adv. High Energy Phys. 2020, 8425745 (2020), arXiv:1902.05118 [hep-th] .
- R. J. Rivers, Lagrangian theory for neutral massive spin-2 fields, Il Nuovo Cimento 34, 386 (1964).
- C. Marzo, Ghost and tachyon free propagation up to spin 3 in Lorentz invariant field theories, Phys. Rev. D 105, 065017 (2022b), arXiv:2108.11982 [hep-ph] .
- J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto, Cosmology for quadratic gravity in generalized Weyl geometry, JCAP 04, 046, arXiv:1602.07287 [hep-th] .
- D. Iosifidis, Exactly Solvable Connections in Metric-Affine Gravity, Class. Quant. Grav. 36, 085001 (2019), arXiv:1812.04031 [gr-qc] .
- D. Iosifidis and T. S. Koivisto, Hyperhydrodynamics: Relativistic Viscous Fluids Emerging from Hypermomentum, (2023), arXiv:2312.06780 [gr-qc] .
- D. Iosifidis, The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation, JCAP 04, 072, arXiv:2101.07289 [gr-qc] .
- D. Iosifidis, Non-Riemannian cosmology: The role of shear hypermomentum, Int. J. Geom. Meth. Mod. Phys. 18, 2150129 (2021b), arXiv:2010.00875 [gr-qc] .
- D. Iosifidis, Cosmological Hyperfluids, Torsion and Non-metricity, Eur. Phys. J. C 80, 1042 (2020), arXiv:2003.07384 [gr-qc] .
- R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51, 406 (1955).
- R. Penrose, On best approximate solutions of linear matrix equations, Proceedings of the Cambridge Philosophical Society 52, 17 (1956).
- W. Barker and C. Marzo, Supplemental materials hosted at github.com/wevbarker/SupplementalMaterials-2402.
- D. Iosifidis and T. Koivisto, Scale transformations in metric-affine geometry, Universe 5, 82 (2019), arXiv:1810.12276 [gr-qc] .
- F. W. Hehl and A. Macias, Metric affine gauge theory of gravity. 2. Exact solutions, Int. J. Mod. Phys. D 8, 399 (1999), arXiv:gr-qc/9902076 .
- G. Şengör, Particles of a de Sitter Universe, Universe 9, 59 (2023), arXiv:2212.10626 [hep-th] .
- B. Tekin, Particle Content of Quadratic and f(Rμνσρ)𝑓subscript𝑅𝜇𝜈𝜎𝜌f(R_{\mu\nu\sigma\rho})italic_f ( italic_R start_POSTSUBSCRIPT italic_μ italic_ν italic_σ italic_ρ end_POSTSUBSCRIPT ) Theories in (A)dS𝐴𝑑𝑆(A)dS( italic_A ) italic_d italic_S, Phys. Rev. D 93, 101502 (2016), arXiv:1604.00891 [hep-th] .
- W. E. V. Barker, Supercomputers against strong coupling in gravity with curvature and torsion, Eur. Phys. J. C 83, 228 (2023b), arXiv:2206.00658 [gr-qc] .
- J. M. Martin-Garcia, R. Portugal, and L. R. U. Manssur, The Invar Tensor Package, Comput. Phys. Commun. 177, 640 (2007), arXiv:0704.1756 [cs.SC] .
- J. M. Martin-Garcia, D. Yllanes, and R. Portugal, The Invar tensor package: Differential invariants of Riemann, Comput. Phys. Commun. 179, 586 (2008), arXiv:0802.1274 [cs.SC] .
- J. M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun. 179, 597 (2008), arXiv:0803.0862 [cs.SC] .
- D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav. 41, 2415 (2009), arXiv:0807.0824 [gr-qc] .
- T. Nutma, xTras : A field-theory inspired xAct package for mathematica, Comput. Phys. Commun. 185, 1719 (2014), arXiv:1308.3493 [cs.SC] .
- O. Melichev and R. Percacci, On the renormalization of Poincaré gauge theories, (2023), arXiv:2307.02336 [hep-th] .
- W. E. Vandepeer Barker, Gauge theories of gravity, Ph.D. thesis, Cambridge U. (2022).
- W. E. V. Barker, Geometric multipliers and partial teleparallelism in Poincaré gauge theory, Phys. Rev. D 108, 024053 (2023c), arXiv:2205.13534 [gr-qc] .
- C. Rigouzzo and S. Zell, Coupling metric-affine gravity to a Higgs-like scalar field, Phys. Rev. D 106, 024015 (2022), arXiv:2204.03003 [hep-th] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.