Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Particle spectra of general Ricci-type Palatini or metric-affine theories (2402.07641v2)

Published 12 Feb 2024 in hep-th and gr-qc

Abstract: In the context of weak-field metric-affine (i.e. Palatini) gravity near Minkowski spacetime, we compute the particle spectra in the simultaneous presence of all independent contractions quadratic in Ricci-type tensors. Apart from the full metric-affine geometry, we study kinematic limits with vanishing torsion (i.e. a symmetric connection) and vanishing non-metricity (i.e. a metric connection, which is physically indistinguishable from Poincar\'e gauge theory at the level of the particle spectrum). We present a detailed report on how spin-parity projection operators can be used to derive systematically and unambiguously the character of the propagating states. The unitarity constraints derived from the requirements of tachyon- and ghost-freedom are obtained. We show that, even in the presence of all Ricci-type operators, only a narrow selection of viable theories emerges by a tuning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. A. Salvio and A. Strumia, Agravity, JHEP 06, 080, arXiv:1403.4226 [hep-ph] .
  2. K. S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16, 953 (1977).
  3. D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06, 086, arXiv:1704.07728 [hep-th] .
  4. D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06, 066, arXiv:1703.04584 [hep-th] .
  5. N. Ohta and R. Percacci, Ultraviolet Fixed Points in Conformal Gravity and General Quadratic Theories, Class. Quant. Grav. 33, 035001 (2016), arXiv:1506.05526 [hep-th] .
  6. R. Percacci and O. Zanusso, One loop beta functions and fixed points in Higher Derivative Sigma Models, Phys. Rev. D 81, 065012 (2010), arXiv:0910.0851 [hep-th] .
  7. C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100, 110402 (2008), arXiv:0706.0207 [hep-th] .
  8. P. D. Mannheim, Making the Case for Conformal Gravity, Found. Phys. 42, 388 (2012), arXiv:1101.2186 [hep-th] .
  9. J. F. Donoghue and G. Menezes, On quadratic gravity, Nuovo Cim. C 45, 26 (2022), arXiv:2112.01974 [hep-th] .
  10. J. F. Donoghue and G. Menezes, Ostrogradsky instability can be overcome by quantum physics, Phys. Rev. D 104, 045010 (2021), arXiv:2105.00898 [hep-th] .
  11. G. K. Karananas, M. Shaposhnikov, and S. Zell, Scale invariant Einstein-Cartan gravity and flat space conformal symmetry, JHEP 11, 171, arXiv:2307.11151 [hep-th] .
  12. D. Iosifidis, Metric-Affine Cosmologies: kinematics of Perfect (Ideal) Cosmological Hyperfluids and first integrals, JCAP 09, 045, arXiv:2301.09868 [gr-qc] .
  13. I. L. Shapiro, Physical aspects of the space-time torsion, Phys. Rept. 357, 113 (2002), arXiv:hep-th/0103093 .
  14. V. Mondal and S. Chakraborty, Lorentzian quantum cosmology with torsion,   (2023), arXiv:2305.01690 [gr-qc] .
  15. C. Rigouzzo and S. Zell, Coupling metric-affine gravity to the standard model and dark matter fermions, Phys. Rev. D 108, 124067 (2023), arXiv:2306.13134 [gr-qc] .
  16. I. V. Fomin, S. V. Chervon, and K. A. Bolshakova, Modified inflationary models based on scalar-torsion gravity,   (2023), arXiv:2312.01142 [gr-qc] .
  17. M. Gonzalez-Espinoza and G. Otalora, Cosmological dynamics of dark energy in scalar-torsion f⁢(T,ϕ)𝑓𝑇italic-ϕf(T,\phi)italic_f ( italic_T , italic_ϕ ) gravity, Eur. Phys. J. C 81, 480 (2021), arXiv:2011.08377 [gr-qc] .
  18. H. I. Arcos and J. G. Pereira, Torsion gravity: A Reappraisal, Int. J. Mod. Phys. D 13, 2193 (2004), arXiv:gr-qc/0501017 .
  19. G. K. Karananas, On the strong-CP problem and its axion solution in torsionful theories, Eur. Phys. J. C 78, 480 (2018), arXiv:1805.08781 [hep-th] .
  20. I. D. Gialamas and K. Tamvakis, Inflation in metric-affine quadratic gravity, JCAP 03, 042, arXiv:2212.09896 [gr-qc] .
  21. Y. Mikura, Y. Tada, and S. Yokoyama, Conformal inflation in the metric-affine geometry, EPL 132, 39001 (2020), arXiv:2008.00628 [hep-th] .
  22. K. Shimada, K. Aoki, and K.-i. Maeda, Metric-affine Gravity and Inflation, Phys. Rev. D 99, 104020 (2019), arXiv:1812.03420 [gr-qc] .
  23. H. Azri and D. Demir, Induced Affine Inflation, Phys. Rev. D 97, 044025 (2018), arXiv:1802.00590 [gr-qc] .
  24. D. Iosifidis, R. Myrzakulov, and L. Ravera, Cosmology of Metric-Affine R+β𝛽\betaitalic_βR2 Gravity with Pure Shear Hypermomentum, Fortsch. Phys. 72, 2300003 (2024), arXiv:2301.00669 [gr-qc] .
  25. C. Dioguardi, A. Racioppi, and E. Tomberg, Slow-roll inflation in Palatini F(R) gravity, JHEP 06, 106, arXiv:2112.12149 [gr-qc] .
  26. C. Dioguardi, A. Racioppi, and E. Tomberg, Beyond (and back to) Palatini quadratic gravity and inflation,   (2022b), arXiv:2212.11869 [gr-qc] .
  27. C. Dioguardi and A. Racioppi, Palatini F⁢(R,X)𝐹𝑅𝑋F(R,X)italic_F ( italic_R , italic_X ): a new framework for inflationary attractors,   (2023), arXiv:2307.02963 [gr-qc] .
  28. R. Percacci and E. Sezgin, New class of ghost- and tachyon-free metric affine gravities, Phys. Rev. D 101, 084040 (2020), arXiv:1912.01023 [hep-th] .
  29. J. Beltrán Jiménez and A. Delhom, Ghosts in metric-affine higher order curvature gravity, Eur. Phys. J. C 79, 656 (2019), arXiv:1901.08988 [gr-qc] .
  30. A. Baldazzi, O. Melichev, and R. Percacci, Metric-Affine Gravity as an effective field theory, Annals Phys. 438, 168757 (2022), arXiv:2112.10193 [gr-qc] .
  31. D. E. Neville, A Gravity Lagrangian With Ghost Free Curvature**2 Terms, Phys. Rev. D 18, 3535 (1978).
  32. D. E. Neville, Gravity Theories With Propagating Torsion, Phys. Rev. D 21, 867 (1980).
  33. H. B. Nezhad and S. Rasanen, Scalar fields with derivative coupling to curvature in the Palatini and the metric formulation, JCAP 02, 009, arXiv:2307.04618 [gr-qc] .
  34. J. Annala and S. Rasanen, Stability of non-degenerate Ricci-type Palatini theories, JCAP 04, 014, [Erratum: JCAP 08, E02 (2023)], arXiv:2212.09820 [gr-qc] .
  35. S. Rasanen and Y. Verbin, Palatini formulation for gauge theory: implications for slow-roll inflation 10.21105/astro.2211.15584 (2022), arXiv:2211.15584 [astro-ph.CO] .
  36. A. Ito, W. Khater, and S. Rasanen, Tree-level unitarity in Higgs inflation in the metric and the Palatini formulation, JHEP 06, 164, arXiv:2111.05621 [astro-ph.CO] .
  37. J. Annala and S. Rasanen, Inflation with R (α𝛼\alphaitalic_αβ𝛽\betaitalic_β) terms in the Palatini formulation, JCAP 09, 032, arXiv:2106.12422 [astro-ph.CO] .
  38. S. Rasanen, Higgs inflation in the Palatini formulation with kinetic terms for the metric, Open J. Astrophys. 2, 1 (2019), arXiv:1811.09514 [gr-qc] .
  39. S. Rasanen and P. Wahlman, Higgs inflation with loop corrections in the Palatini formulation, JCAP 11, 047, arXiv:1709.07853 [astro-ph.CO] .
  40. O. I. Melichev, Quantum Aspects of Metric-Affine Gravity, Ph.D. thesis, SISSA (2023).
  41. Y. Mikura and R. Percacci, Some simple theories of gravity with propagating nonmetricity,   (2024), arXiv:2401.10097 [gr-qc] .
  42. Y. Mikura, V. Naso, and R. Percacci, Some simple theories of gravity with propagating torsion,   (2023), arXiv:2312.10249 [gr-qc] .
  43. R. Percacci, Towards Metric-Affine Quantum Gravity, Int. J. Geom. Meth. Mod. Phys. 17, 2040003 (2020), arXiv:2003.09486 [gr-qc] .
  44. Y. Mikura, Y. Tada, and S. Yokoyama, Minimal k𝑘kitalic_k-inflation in light of the conformal metric-affine geometry, Phys. Rev. D 103, L101303 (2021), arXiv:2103.13045 [hep-th] .
  45. Y. Mikura and Y. Tada, On UV-completion of Palatini-Higgs inflation, JCAP 05 (05), 035, arXiv:2110.03925 [hep-ph] .
  46. M. He, Y. Mikura, and Y. Tada, Hybrid metric-Palatini Higgs inflation, JCAP 05, 047, arXiv:2209.11051 [hep-th] .
  47. P. Van Nieuwenhuizen, On ghost-free tensor lagrangians and linearized gravitation, Nucl. Phys. B 60, 478 (1973).
  48. E. Sezgin and P. van Nieuwenhuizen, New Ghost Free Gravity Lagrangians with Propagating Torsion, Phys. Rev. D 21, 3269 (1980).
  49. E. Sezgin, Class of Ghost Free Gravity Lagrangians With Massive or Massless Propagating Torsion, Phys. Rev. D 24, 1677 (1981).
  50. C. Marzo, Radiatively stable ghost and tachyon freedom in metric affine gravity, Phys. Rev. D 106, 024045 (2022a), arXiv:2110.14788 [hep-th] .
  51. G. K. Karananas, The particle spectrum of parity-violating Poincaré gravitational theory, Class. Quant. Grav. 32, 055012 (2015), arXiv:1411.5613 [gr-qc] .
  52. Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Ghost and tachyon free Poincaré gauge theories: A systematic approach, Phys. Rev. D 99, 064001 (2019), arXiv:1812.02675 [gr-qc] .
  53. Y.-C. Lin, M. P. Hobson, and A. N. Lasenby, Ghost- and tachyon-free Weyl gauge theories: A systematic approach, Phys. Rev. D 104, 024034 (2021), arXiv:2005.02228 [gr-qc] .
  54. W. Barker and S. Zell, Einstein-Proca theory from the Einstein-Cartan formulation, Phys. Rev. D 109, 024007 (2024), arXiv:2306.14953 [hep-th] .
  55. V. Vitagliano, T. P. Sotiriou, and S. Liberati, The dynamics of generalized Palatini Theories of Gravity, Phys. Rev. D 82, 084007 (2010), arXiv:1007.3937 [gr-qc] .
  56. G. Allemandi, A. Borowiec, and M. Francaviglia, Accelerated cosmological models in Ricci squared gravity, Phys. Rev. D 70, 103503 (2004), arXiv:hep-th/0407090 .
  57. B. Li, J. D. Barrow, and D. F. Mota, The Cosmology of Ricci-Tensor-Squared gravity in the Palatini variational approach, Phys. Rev. D 76, 104047 (2007), arXiv:0707.2664 [gr-qc] .
  58. G. J. Olmo, H. Sanchis-Alepuz, and S. Tripathi, Dynamical Aspects of Generalized Palatini Theories of Gravity, Phys. Rev. D 80, 024013 (2009), arXiv:0907.2787 [gr-qc] .
  59. C. Barragan and G. J. Olmo, Isotropic and Anisotropic Bouncing Cosmologies in Palatini Gravity, Phys. Rev. D 82, 084015 (2010), arXiv:1005.4136 [gr-qc] .
  60. F. Bauer, Filtering out the cosmological constant in the Palatini formalism of modified gravity, Gen. Rel. Grav. 43, 1733 (2011), arXiv:1007.2546 [gr-qc] .
  61. W. Barker and C. Marzo, Particle Spectrum for any tensor Lagrangian (PSALTer) — in prep,   (2024).
  62. W. Barker, Particle spectra of gravity based on internal symmetry of quantum fields,  (2023a), arXiv:2311.11790 [hep-th] .
  63. M. Partanen and J. Tulkki, Gravity based on internal symmetry of quantum fields,   (2023a), arXiv:2310.01460 [gr-qc] .
  64. M. Partanen and J. Tulkki, QED based on eight-dimensional spinorial wave equation of the electromagnetic field and the emergence of quantum gravity,   (2023b), arXiv:2310.02285 [physics.gen-ph] .
  65. S. Deser and R. Arnowitt, Interaction Among Gauge Vector Fields, Nucl. Phys. 49, 133 (1963).
  66. S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1, 9 (1970), arXiv:gr-qc/0411023 .
  67. J. Fang and C. Fronsdal, Deformation of Gauge Groups. Gravitation, J. Math. Phys. 20, 2264 (1979).
  68. R. Kuhfuss and J. Nitsch, Propagating Modes in Gauge Field Theories of Gravity, Gen. Rel. Grav. 18, 1207 (1986).
  69. E. L. Mendonça and R. Schimidt Bittencourt, Unitarity of Singh-Hagen model in D𝐷Ditalic_D dimensions, Adv. High Energy Phys. 2020, 8425745 (2020), arXiv:1902.05118 [hep-th] .
  70. R. J. Rivers, Lagrangian theory for neutral massive spin-2 fields, Il Nuovo Cimento 34, 386 (1964).
  71. C. Marzo, Ghost and tachyon free propagation up to spin 3 in Lorentz invariant field theories, Phys. Rev. D 105, 065017 (2022b), arXiv:2108.11982 [hep-ph] .
  72. J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto, Cosmology for quadratic gravity in generalized Weyl geometry, JCAP 04, 046, arXiv:1602.07287 [hep-th] .
  73. D. Iosifidis, Exactly Solvable Connections in Metric-Affine Gravity, Class. Quant. Grav. 36, 085001 (2019), arXiv:1812.04031 [gr-qc] .
  74. D. Iosifidis and T. S. Koivisto, Hyperhydrodynamics: Relativistic Viscous Fluids Emerging from Hypermomentum,  (2023), arXiv:2312.06780 [gr-qc] .
  75. D. Iosifidis, The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation, JCAP 04, 072, arXiv:2101.07289 [gr-qc] .
  76. D. Iosifidis, Non-Riemannian cosmology: The role of shear hypermomentum, Int. J. Geom. Meth. Mod. Phys. 18, 2150129 (2021b), arXiv:2010.00875 [gr-qc] .
  77. D. Iosifidis, Cosmological Hyperfluids, Torsion and Non-metricity, Eur. Phys. J. C 80, 1042 (2020), arXiv:2003.07384 [gr-qc] .
  78. R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51, 406 (1955).
  79. R. Penrose, On best approximate solutions of linear matrix equations, Proceedings of the Cambridge Philosophical Society 52, 17 (1956).
  80. W. Barker and C. Marzo, Supplemental materials hosted at github.com/wevbarker/SupplementalMaterials-2402.
  81. D. Iosifidis and T. Koivisto, Scale transformations in metric-affine geometry, Universe 5, 82 (2019), arXiv:1810.12276 [gr-qc] .
  82. F. W. Hehl and A. Macias, Metric affine gauge theory of gravity. 2. Exact solutions, Int. J. Mod. Phys. D 8, 399 (1999), arXiv:gr-qc/9902076 .
  83. G. Şengör, Particles of a de Sitter Universe, Universe 9, 59 (2023), arXiv:2212.10626 [hep-th] .
  84. B. Tekin, Particle Content of Quadratic and f⁢(Rμ⁢ν⁢σ⁢ρ)𝑓subscript𝑅𝜇𝜈𝜎𝜌f(R_{\mu\nu\sigma\rho})italic_f ( italic_R start_POSTSUBSCRIPT italic_μ italic_ν italic_σ italic_ρ end_POSTSUBSCRIPT ) Theories in (A)⁢d⁢S𝐴𝑑𝑆(A)dS( italic_A ) italic_d italic_S, Phys. Rev. D 93, 101502 (2016), arXiv:1604.00891 [hep-th] .
  85. W. E. V. Barker, Supercomputers against strong coupling in gravity with curvature and torsion, Eur. Phys. J. C 83, 228 (2023b), arXiv:2206.00658 [gr-qc] .
  86. J. M. Martin-Garcia, R. Portugal, and L. R. U. Manssur, The Invar Tensor Package, Comput. Phys. Commun. 177, 640 (2007), arXiv:0704.1756 [cs.SC] .
  87. J. M. Martin-Garcia, D. Yllanes, and R. Portugal, The Invar tensor package: Differential invariants of Riemann, Comput. Phys. Commun. 179, 586 (2008), arXiv:0802.1274 [cs.SC] .
  88. J. M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun. 179, 597 (2008), arXiv:0803.0862 [cs.SC] .
  89. D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav. 41, 2415 (2009), arXiv:0807.0824 [gr-qc] .
  90. T. Nutma, xTras : A field-theory inspired xAct package for mathematica, Comput. Phys. Commun. 185, 1719 (2014), arXiv:1308.3493 [cs.SC] .
  91. O. Melichev and R. Percacci, On the renormalization of Poincaré gauge theories,   (2023), arXiv:2307.02336 [hep-th] .
  92. W. E. Vandepeer Barker, Gauge theories of gravity, Ph.D. thesis, Cambridge U. (2022).
  93. W. E. V. Barker, Geometric multipliers and partial teleparallelism in Poincaré gauge theory, Phys. Rev. D 108, 024053 (2023c), arXiv:2205.13534 [gr-qc] .
  94. C. Rigouzzo and S. Zell, Coupling metric-affine gravity to a Higgs-like scalar field, Phys. Rev. D 106, 024015 (2022), arXiv:2204.03003 [hep-th] .
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.