2000 character limit reached
Semialgebraicity of the convergence domain of an algebraic power series (2402.07524v2)
Published 12 Feb 2024 in math.CV and math.AG
Abstract: Given a power series in finitely many variables that is algebraic over the corresponding polynomial ring over a subfield of the reals, we show that its convergence domain is semialgebraic over the real closure of the subfield. This gives in particular that the convergence radius of a univariate Puiseux series that is algebraic in the above sense belongs to the real closure or is infinity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.