Dynamically Generated Decoherence-Free Subspaces and Subsystems on Superconducting Qubits (2402.07278v2)
Abstract: Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated DFS logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.
- D. Lidar and T. Brun, eds., Quantum Error Correction (Cambridge University Press, Cambridge, UK, 2013).
- L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999).
- P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999).
- G. Gordon, G. Kurizki, and D. A. Lidar, Optimal dynamical decoherence control of a qubit, Phys. Rev. Lett. 101, 010403 (2008).
- D. Suter and G. A. Álvarez, Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys. 88, 041001 (2016).
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical review A 52, R2493 (1995).
- A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
- D. Gottesman, Class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A 54, 1862 (1996).
- F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing (Taylor & Francis Group, Boca Raton, 2008).
- R. Alicki, Limited thermalization for the Markov mean-field model of N𝑁{N}italic_N atoms in thermal field, Physica A: Statistical Mechanics and its Applications 150, 455 (1988).
- G.M. Palma, K.-A. Suominen and A.K. Ekert, Quantum Computers and Dissipation, Proc. R.. Soc. London Ser. A 452, 567 (1996).
- P. Zanardi and M. Rasetti, Noiseless Quantum Codes, Physical Review Letters 79, 3306 (1997).
- L.-M. Duan and G.-C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Physical Review Letters 79, 1953 (1997).
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Physical Review Letters 81, 2594 (1998).
- E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
- P. Zanardi, Stabilizing quantum information, Physical Review A 63, 012301 (2000).
- D. A. Lidar, D. Bacon, and K. B. Whaley, Concatenating decoherence-free subspaces with quantum error correcting codes, Phys. Rev. Lett. 82, 4556 (1999).
- L. Viola, E. Knill, and S. Lloyd, Dynamical generation of noiseless quantum subsystems, Phys. Rev. Lett. 85, 3520 (2000).
- K. Khodjasteh and D. A. Lidar, Universal fault-tolerant quantum computation in the presence of spontaneous emission and collective dephasing, Physical Review Letters 89, 197904 (2002).
- H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2011).
- G. A. Paz-Silva and D. A. Lidar, Optimally combining dynamical decoupling and quantum error correction, Sci. Rep. 3, 1530 (2013).
- E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 EP (2017).
- B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup, Physical Review Letters 130, 210602 (2023).
- H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
- S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Review of scientific instruments 29, 688 (1958).
- U. Haeberlen and J. S. Waugh, Coherent averaging effects in magnetic resonance, Physical Review 175, 453 (1968).
- Y. Sagi, I. Almog, and N. Davidson, Process tomography of dynamical decoupling in a dense cold atomic ensemble, Physical Review Letters 105, 053201 (2010).
- R. Harper and S. T. Flammia, Fault-tolerant logical gates in the ibm quantum experience, Phys. Rev. Lett. 122, 080504 (2019).
- Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- M. Urbanek, B. Nachman, and W. A. de Jong, Error detection on quantum computers improving the accuracy of chemical calculations, Phys. Rev. A 102, 022427 (2020).
- B. Pokharel and D. Lidar, Better-than-classical Grover search via quantum error detection and suppression (2022), arXiv:2211.04543 [quant-ph] .
- J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, Magnetic resonance realization of decoherence-free quantum computation, Phys. Rev. Lett. 91, 217904 (2003).
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- L. A. Wu and D. A. Lidar, Creating decoherence-free subspaces using strong and fast pulses, Phys. Rev. Lett. 88, 207902 (2002).
- L. A. Wu, M. S. Byrd, and D. A. Lidar, Efficient universal leakage elimination for physical and encoded qubits, Phys. Rev. Lett. 89, 127901 (2002).
- M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett. 89, 047901 (2002).
- D. A. Lidar and L. A. Wu, Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation, Physical Review A 67, 032313 (2003a).
- B. H. Fong and S. M. Wandzura, Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem, Quantum. Inf. Comput. 11, 1003 (2011).
- J. R. West and B. H. Fong, Exchange-only dynamical decoupling in the three-qubit decoherence free subsystem, New Journal of Physics 14, 083002 (2012).
- C.-P. Yang and J. Gea-Banacloche, Three-qubit quantum error-correction scheme for collective decoherence, Physical Review A 63, 022311 (2001).
- Y. Xia, G. S. Uhrig, and D. A. Lidar, Rigorous performance bounds for quadratic and nested dynamical decoupling, Phys. Rev. A 84, 062332 (2011).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, USA, 2011).
- R. Stine, An introduction to bootstrap methods: Examples and ideas, Sociological Methods & Research 18, 243 (1989).
- P. Stoica and Y. Selen, Model-order selection: a review of information criterion rules, IEEE Signal Processing Magazine 21, 36 (2004).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.