Papers
Topics
Authors
Recent
2000 character limit reached

Dynamically Generated Decoherence-Free Subspaces and Subsystems on Superconducting Qubits (2402.07278v2)

Published 11 Feb 2024 in quant-ph

Abstract: Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated DFS logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. D. Lidar and T. Brun, eds., Quantum Error Correction (Cambridge University Press, Cambridge, UK, 2013).
  2. L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
  3. L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999).
  4. P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999).
  5. G. Gordon, G. Kurizki, and D. A. Lidar, Optimal dynamical decoherence control of a qubit, Phys. Rev. Lett. 101, 010403 (2008).
  6. D. Suter and G. A. Álvarez, Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys. 88, 041001 (2016).
  7. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical review A 52, R2493 (1995).
  8. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
  9. D. Gottesman, Class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A 54, 1862 (1996).
  10. F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing (Taylor & Francis Group, Boca Raton, 2008).
  11. R. Alicki, Limited thermalization for the Markov mean-field model of N𝑁{N}italic_N atoms in thermal field, Physica A: Statistical Mechanics and its Applications 150, 455 (1988).
  12. G.M. Palma, K.-A. Suominen and A.K. Ekert, Quantum Computers and Dissipation, Proc. R.. Soc. London Ser. A 452, 567 (1996).
  13. P. Zanardi and M. Rasetti, Noiseless Quantum Codes, Physical Review Letters 79, 3306 (1997).
  14. L.-M. Duan and G.-C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Physical Review Letters 79, 1953 (1997).
  15. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Physical Review Letters 81, 2594 (1998).
  16. E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
  17. P. Zanardi, Stabilizing quantum information, Physical Review A 63, 012301 (2000).
  18. D. A. Lidar, D. Bacon, and K. B. Whaley, Concatenating decoherence-free subspaces with quantum error correcting codes, Phys. Rev. Lett. 82, 4556 (1999).
  19. L. Viola, E. Knill, and S. Lloyd, Dynamical generation of noiseless quantum subsystems, Phys. Rev. Lett. 85, 3520 (2000).
  20. K. Khodjasteh and D. A. Lidar, Universal fault-tolerant quantum computation in the presence of spontaneous emission and collective dephasing, Physical Review Letters 89, 197904 (2002).
  21. H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2011).
  22. G. A. Paz-Silva and D. A. Lidar, Optimally combining dynamical decoupling and quantum error correction, Sci. Rep. 3, 1530 (2013).
  23. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 EP (2017).
  24. B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup, Physical Review Letters 130, 210602 (2023).
  25. H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
  26. S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Review of scientific instruments 29, 688 (1958).
  27. U. Haeberlen and J. S. Waugh, Coherent averaging effects in magnetic resonance, Physical Review 175, 453 (1968).
  28. Y. Sagi, I. Almog, and N. Davidson, Process tomography of dynamical decoupling in a dense cold atomic ensemble, Physical Review Letters 105, 053201 (2010).
  29. R. Harper and S. T. Flammia, Fault-tolerant logical gates in the ibm quantum experience, Phys. Rev. Lett. 122, 080504 (2019).
  30. Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  31. M. Urbanek, B. Nachman, and W. A. de Jong, Error detection on quantum computers improving the accuracy of chemical calculations, Phys. Rev. A 102, 022427 (2020).
  32. B. Pokharel and D. Lidar, Better-than-classical Grover search via quantum error detection and suppression (2022), arXiv:2211.04543 [quant-ph] .
  33. J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, Magnetic resonance realization of decoherence-free quantum computation, Phys. Rev. Lett. 91, 217904 (2003).
  34. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  35. L. A. Wu and D. A. Lidar, Creating decoherence-free subspaces using strong and fast pulses, Phys. Rev. Lett. 88, 207902 (2002).
  36. L. A. Wu, M. S. Byrd, and D. A. Lidar, Efficient universal leakage elimination for physical and encoded qubits, Phys. Rev. Lett. 89, 127901 (2002).
  37. M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett. 89, 047901 (2002).
  38. D. A. Lidar and L. A. Wu, Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation, Physical Review A 67, 032313 (2003a).
  39. B. H. Fong and S. M. Wandzura, Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem, Quantum. Inf. Comput. 11, 1003 (2011).
  40. J. R. West and B. H. Fong, Exchange-only dynamical decoupling in the three-qubit decoherence free subsystem, New Journal of Physics 14, 083002 (2012).
  41. C.-P. Yang and J. Gea-Banacloche, Three-qubit quantum error-correction scheme for collective decoherence, Physical Review A 63, 022311 (2001).
  42. Y. Xia, G. S. Uhrig, and D. A. Lidar, Rigorous performance bounds for quadratic and nested dynamical decoupling, Phys. Rev. A 84, 062332 (2011).
  43. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, USA, 2011).
  44. R. Stine, An introduction to bootstrap methods: Examples and ideas, Sociological Methods & Research 18, 243 (1989).
  45. P. Stoica and Y. Selen, Model-order selection: a review of information criterion rules, IEEE Signal Processing Magazine 21, 36 (2004).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 3 likes about this paper.