Papers
Topics
Authors
Recent
2000 character limit reached

Divide and Conquer: Provably Unveiling the Pareto Front with Multi-Objective Reinforcement Learning (2402.07182v3)

Published 11 Feb 2024 in cs.LG

Abstract: An important challenge in multi-objective reinforcement learning is obtaining a Pareto front of policies to attain optimal performance under different preferences. We introduce Iterated Pareto Referent Optimisation (IPRO), which decomposes finding the Pareto front into a sequence of constrained single-objective problems. This enables us to guarantee convergence while providing an upper bound on the distance to undiscovered Pareto optimal solutions at each step. We evaluate IPRO using utility-based metrics and its hypervolume and find that it matches or outperforms methods that require additional assumptions. By leveraging problem-specific single-objective solvers, our approach also holds promise for applications beyond multi-objective reinforcement learning, such as planning and pathfinding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 26 likes about this paper.