An attempt to generate new bridge types from latent space of denoising diffusion Implicit model
Abstract: Use denoising diffusion implicit model for bridge-type innovation. The process of adding noise and denoising to an image can be likened to the process of a corpse rotting and a detective restoring the scene of a victim being killed, to help beginners understand. Through an easy-to-understand algebraic method, derive the function formulas for adding noise and denoising, making it easier for beginners to master the mathematical principles of the model. Using symmetric structured image dataset of three-span beam bridge, arch bridge, cable-stayed bridge and suspension bridge , based on Python programming language, TensorFlow and Keras deep learning platform framework , denoising diffusion implicit model is constructed and trained. From the latent space sampling, new bridge types with asymmetric structures can be generated. Denoising diffusion implicit model can organically combine different structural components on the basis of human original bridge types, and create new bridge types.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.