Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

ORIENT: A Priority-Aware Energy-Efficient Approach for Latency-Sensitive Applications in 6G (2402.06931v1)

Published 10 Feb 2024 in cs.NI, cs.AI, cs.DC, and cs.LG

Abstract: Anticipation for 6G's arrival comes with growing concerns about increased energy consumption in computing and networking. The expected surge in connected devices and resource-demanding applications presents unprecedented challenges for energy resources. While sustainable resource allocation strategies have been discussed in the past, these efforts have primarily focused on single-domain orchestration or ignored the unique requirements posed by 6G. To address this gap, we investigate the joint problem of service instance placement and assignment, path selection, and request prioritization, dubbed PIRA. The objective function is to maximize the system's overall profit as a function of the number of concurrently supported requests while simultaneously minimizing energy consumption over an extended period of time. In addition, end-to-end latency requirements and resource capacity constraints are considered for computing and networking resources, where queuing theory is utilized to estimate the Age of Information (AoI) for requests. After formulating the problem in a non-linear fashion, we prove its NP-hardness and propose a method, denoted ORIENT. This method is based on the Double Dueling Deep Q-Learning (D3QL) mechanism and leverages Graph Neural Networks (GNNs) for state encoding. Extensive numerical simulations demonstrate that ORIENT yields near-optimal solutions for varying system sizes and request counts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.