Papers
Topics
Authors
Recent
2000 character limit reached

LiFi: Lightweight Controlled Text Generation with Fine-Grained Control Codes

Published 10 Feb 2024 in cs.CL | (2402.06930v1)

Abstract: In the rapidly evolving field of text generation, the demand for more precise control mechanisms has become increasingly apparent. To address this need, we present a novel methodology, LIFI, which offers a lightweight approach with fine-grained control for controlled text generation. Unlike previous studies that train pre-trained LLMs to follow discrete, categorical, and exclusive control codes, LIFI learns controlled text generation under the guidance of continuous, relative, and nonexclusive control codes. These fine-grained codes are automatically derived from an attribute classifier, initially trained with a small amount of labeled data and subsequently employed to label abundant unlabeled data, thus garnering more extensive supervision signals. Moreover, to achieve efficient control, we incorporate the fine-grained control codes with adapters, a parameter- and compute-efficient way to steer a pre-trained LLM. We evaluate LIFI on two conventional tasks -- sentiment control and topic control -- and one newly proposed task -- stylistic novel writing. Comprehensive experimental results validate the effectiveness of our proposed methods, demonstrating substantial performance improvements over existing baselines.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.