Consistent inclusion of fluctuations in first-order causal and stable relativistic hydrodynamics (2402.06776v2)
Abstract: We construct, for the first time, a Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory for linear stochastic fluctuations, which is proved to be mathematically consistent, causal, and covariantly stable. The Martin-Siggia-Rose action is shown to be bilocal in most cases, and the noise is not white. The presence of nonhydrodynamic modes induces long-range correlations in the primary fluid variables (temperature, chemical potential, and flow velocity). However, correlators of conserved densities remain localized in space, and coincide with those calculated within fluctuating Isreal-Stewart theory. We show that, in some cases, there is a nonlocal change of variables that maps the Israel-Stewart action into the BDNK action.
- L. Landau and E. Lifshitz, Statistical Physics, v. 5 (Elsevier Science, 2013).
- R. Pathria and P. D. Beale, in Statistical Mechanics (Third Edition), edited by R. Pathria and P. D. Beale (Academic Press, Boston, 2011) third edition ed., pp. 583–635.
- R. Kubo, Rept. Prog. Phys. 29, 255 (1966).
- K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).
- L. Yan and H. Grönqvist, JHEP 03, 121 (2016), arXiv:1511.07198 [nucl-th] .
- M. Singh, Characterizing the quark gluon plasma using soft thermal fluctuations and hard parton interactions, Ph.D. thesis, McGill U. (2021).
- M. Martinez and T. Schäfer, Phys. Rev. C 99, 054902 (2019), arXiv:1812.05279 [hep-th] .
- A. Jain and P. Kovtun,  (2023), arXiv:2309.00511 [hep-th] .
- P. Kovtun, Journal of High Energy Physics 2019, 34 (2019), arXiv:1907.08191 [hep-th] .
- R. F. Fox and G. E. Uhlenbeck, Physics of Fluids 13, 1893 (1970).
- W. Israel and J. Stewart, Annals of Physics 118, 341 (1979).
- J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method: With Applications, Mathematics in science andengineering, v.4 (Academic Press, 1961).
- L. Gavassino, Classical and Quantum Gravity 38, 21LT02 (2021), arXiv:2104.09142 [gr-qc] .
- L. Gavassino and M. Antonelli, Class. Quant. Grav. 40, 075012 (2023), arXiv:2209.12865 [gr-qc] .
- L. Gavassino, Classical and Quantum Gravity 39, 185008 (2022a), arXiv:2202.06760 [gr-qc] .
- L. Landau and E. Lifshitz, Fluid Mechanics, v. 6 (Elsevier Science, 2013).
- S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, 1995).
- W. A. Hiscock and L. Lindblom, Annals of Physics 151, 466 (1983).
- L. Gavassino, Physics Letters B 840, 137854 (2023).
- R. M. Wald, General relativity (Chicago Univ. Press, Chicago, IL, 1984).
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
- L. Gavassino, Physical Review X 12, 041001 (2022b), arXiv:2111.05254 [gr-qc] .
- P. Kovtun, Journal of Physics A Mathematical General 45, 473001 (2012), arXiv:1205.5040 [hep-th] .
- J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New York, NY, 1999).
- C. Cattaneo, Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée, Comptes rendus hebdomadaires des séances de l’Académie des sciences (Gauthier-Villars, 1958).
- T. S. Olson, Annals of Physics 199, 18 (1990).
- N. Barat and J. C. Kimball, Physics Letters A 308, 110 (2003), arXiv:quant-ph/0111060 [quant-ph] .
- A. Petrosyan and A. Zaccone, J. Phys. A 55, 015001 (2022), arXiv:2107.07205 [cond-mat.stat-mech] .
- T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics (Springer-Verlag, Berlin, 1995).
- T. Needham, Visual complex analysis (Oxford Univ. Press, Oxford, 2002).
- T.-T. Lu and S.-H. Shiou, Computers and Mathematics with Applications 43, 119 (2002).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.