Characterizing finite groups whose enhanced power graphs have universal vertices (2402.06157v1)
Abstract: Let $G$ be a finite group and construct a graph $\Delta(G)$ by taking $G\setminus{1}$ as the vertex set of $\Delta(G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle$ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta(G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient conditon for $K(G)$ to be nontrivial. We also develop a connection between $\Delta(G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta(G)$ is $2$.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.