Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Methods for Variational Inequalities under Relaxed Smoothness Assumption (2402.05691v1)

Published 8 Feb 2024 in math.OC

Abstract: Variational Inequality (VI) problems have attracted great interest in the ML community due to their application in adversarial and multi-agent training. Despite its relevance in ML, the oft-used strong-monotonicity and Lipschitz continuity assumptions on VI problems are restrictive and do not hold in practice. To address this, we relax smoothness and monotonicity assumptions and study structured non-monotone generalized smoothness. The key idea of our results is in adaptive stepsizes. We prove the first-known convergence results for solving generalized smooth VIs for the three popular methods, namely, projection, Korpelevich, and Popov methods. Our convergence rate results for generalized smooth VIs match or improve existing results on smooth VIs. We present numerical experiments that support our theoretical guarantees and highlight the efficiency of proposed adaptive stepsizes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.