Papers
Topics
Authors
Recent
2000 character limit reached

Toward Grünbaum's Conjecture (2402.05681v1)

Published 8 Feb 2024 in cs.DM and math.CO

Abstract: Given a spanning tree $T$ of a planar graph $G$, the co-tree of $T$ is the spanning tree of the dual graph $G*$ with edge set $(E(G)-E(T))*$. Gr\"unbaum conjectured in 1970 that every planar 3-connected graph $G$ contains a spanning tree $T$ such that both $T$ and its co-tree have maximum degree at most 3. While Gr\"unbaum's conjecture remains open, Biedl proved that there is a spanning tree $T$ such that $T$ and its co-tree have maximum degree at most 5. By using new structural insights into Schnyder woods, we prove that there is a spanning tree $T$ such that $T$ and its co-tree have maximum degree at most 4.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.