Papers
Topics
Authors
Recent
2000 character limit reached

Topological closure of formal power series ideals and application to topological rewriting theory

Published 8 Feb 2024 in math.AC and math.RA | (2402.05511v3)

Abstract: We investigate formal power series ideals and their relationship to topological rewriting theory. Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated by the indeterminates. We provide a constructive proof of this result which, given a formal power series in the topological closure of an ideal, consists in computing a cofactor representation of the series with respect to a standard basis of the ideal. We apply this result in the context of topological rewriting theory, where two natural notions of confluence arise: topological confluence and infinitary confluence. We give explicit examples illustrating that in general, infinitary confluence is a strictly stronger notion than topological confluence. Using topological closure of ideals, we finally show that in the context of rewriting theory on commutative formal power series, infinitary and topological confluences are equivalent when the monomial order considered is compatible with the degree.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.