Papers
Topics
Authors
Recent
2000 character limit reached

$L^\infty$-optimal transport of anisotropic log-concave measures and exponential convergence in Fisher's infinitesimal model

Published 6 Feb 2024 in math.PR | (2402.04151v1)

Abstract: We prove upper bounds on the $L\infty$-Wasserstein distance from optimal transport between strongly log-concave probability densities and log-Lipschitz perturbations. In the simplest setting, such a bound amounts to a transport-information inequality involving the $L\infty$-Wasserstein metric and the relative $L\infty$-Fisher information. We show that this inequality can be sharpened significantly in situations where the involved densities are anisotropic. Our proof is based on probabilistic techniques using Langevin dynamics. As an application of these results, we obtain sharp exponential rates of convergence in Fisher's infinitesimal model from quantitative genetics, generalising recent results by Calvez, Poyato, and Santambrogio in dimension 1 to arbitrary dimensions.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 60 likes about this paper.