Estimating the Local Learning Coefficient at Scale (2402.03698v2)
Abstract: The \textit{local learning coefficient} (LLC) is a principled way of quantifying model complexity, originally derived in the context of Bayesian statistics using singular learning theory (SLT). Several methods are known for numerically estimating the local learning coefficient, but so far these methods have not been extended to the scale of modern deep learning architectures or data sets. Using a method developed in {\tt arXiv:2308.12108 [stat.ML]} we empirically show how the LLC may be measured accurately and self-consistently for deep linear networks (DLNs) up to 100M parameters. We also show that the estimated LLC has the rescaling invariance that holds for the theoretical quantity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.