Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Primordial black hole formation during slow-reheating: A review (2402.03542v1)

Published 5 Feb 2024 in astro-ph.CO

Abstract: In this paper we review the possible mechanisms for the production of primordial black holes (PBHs) during a slow-reheating period {in which the energy transfer of the inflaton field to standard model particles becomes effective at slow temperatures}, offering a comprehensive examination of the theoretical foundations and conditions required for each of formation channel. In particular, we focus on post-inflationary scenarios where there are no self-resonances and the reheating epoch can be described {by the inflaton evolving in} a quadratic-like potential. In the hydrodynamical interpretation of this field during the slow-reheating epoch, the gravitational collapse of primordial fluctuations is subject to conditions on their sphericity, limits on their spin, as well as a maximum velocity dispersion. We show how to account for all conditions and show that PBHs form with different masses depending on the collapse mechanism. Finally we show, through an example, how PBH production serves to probe both the physics after primordial inflation, as well as the primordial powerspectrum at the smallest scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (187)
  1. Primordial Black Holes as a dark matter candidate. J. Phys. G, 48(4):043001, 2021.
  2. Constraints on primordial black holes. Rept. Prog. Phys., 84(11):116902, 2021.
  3. Inflation and Primordial Black Holes. Universe, 9(5):203, 2023.
  4. Maxim Yu. Khlopov. Primordial Black Holes. Res. Astron. Astrophys., 10:495–528, 2010.
  5. Juan García-Bellido. Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves. J. Phys. Conf. Ser., 840(1):012032, 2017.
  6. Primordial black holes—perspectives in gravitational wave astronomy. Class. Quant. Grav., 35(6):063001, 2018.
  7. Primordial Black Holes as Dark Matter: Recent Developments. Ann. Rev. Nucl. Part. Sci., 70:355–394, 2020.
  8. Primordial Black Holes. 11 2022.
  9. Reheating in inflationary cosmology: Theory and applications. Annual Review of Nuclear and Particle Science, 60(1):27–51, 2010.
  10. Nonperturbative Dynamics Of Reheating After Inflation: A Review. Int. J. Mod. Phys. D, 24:1530003, 2014.
  11. Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
  12. Particle physics models of inflation and the cosmological density perturbation. Physics Reports, 314(1):1–146, 1999.
  13. Keith A. Olive. Inflation. Physics Reports, 190(6):307–403, 1990.
  14. Andrei D. Linde. The Inflationary Universe. Rept. Prog. Phys., 47:925–986, 1984.
  15. Jerome Martin. The Theory of Inflation. Proc. Int. Sch. Phys. Fermi, 200:155–178, 2020.
  16. Daniel Baumann. Inflation. In Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pages 523–686, 2011.
  17. Recent Advances in Inflation. Symmetry, 15(9):1701, 2023.
  18. Inflationary cosmology: from theory to observations. Rev. Mex. Fis. E, 17(1):73–91, 2020.
  19. D. Langlois. Lectures on inflation and cosmological perturbations. Lect. Notes Phys., 800:1–57, 2010.
  20. K. El Bourakadi. Preheating and Reheating after Standard Inflation. 4 2021.
  21. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci., 60:27–51, 2010.
  22. New mechanism for primordial black hole formation during reheating. Phys. Rev. D, 106(2):023519, 2022.
  23. Production of PBHs from inflaton structures. Phys. Rev. D, 107(6):063519, 2023.
  24. Constraining inflationary potentials with inflaton PBHs. 3 2023.
  25. Primordial black holes in matter-dominated eras: The role of accretion. Phys. Lett. B, 832:137265, 2022.
  26. Collapse threshold for a cosmological Klein Gordon field. Phys. Rev. D, 96(6):063504, 2017.
  27. Threshold of primordial black hole formation against velocity dispersion in matter-dominated era. JCAP, 02:038, 2023.
  28. Sukannya Bhattacharya. Primordial Black Hole Formation in Non-Standard Post-Inflationary Epochs. Galaxies, 11(1):35, 2023.
  29. Primordial black holes from the preheating instability in single-field inflation. Journal of Cosmology and Astroparticle Physics, 2020(01):024, jan 2020.
  30. Primordial Black Hole Formation During Slow Reheating After Inflation. Phys. Rev. D, 97(12):123535, 2018.
  31. Primordial black hole formation in the matter-dominated phase of the Universe. Astrophys. J., 833(1):61, 2016.
  32. Spins of primordial black holes formed in the matter-dominated phase of the Universe. Phys. Rev. D, 96(8):083517, 2017. [Erratum: Phys.Rev.D 99, 069904 (2019)].
  33. Primordial black holes from inflaton and spectator field perturbations in a matter-dominated era. Phys. Rev. D, 96(6):063507, 2017.
  34. Complex Scalar Field Reheating and Primordial Black Hole production. JCAP, 07:001, 2021.
  35. Primordial Black Holes as All Dark Matter. JCAP, 04:023, 2010.
  36. Inflation and primordial black holes as dark matter. Phys. Rev. D, 50:7173–7178, 1994.
  37. Primordial black holes as dark matter candidates. SciPost Phys. Lect. Notes, 48:1, 2022.
  38. A brief review on primordial black holes as dark matter. Frontiers in Astronomy and Space Sciences, 8, 2021.
  39. Gabriele Franciolini. Primordial Black Holes:from Theory to Gravitational Wave Observations. PhD thesis, Geneva U., Dept. Theor. Phys., 2021.
  40. Primordial black holes and gravitational waves from dissipation during inflation. JCAP, 12:006, 2022.
  41. Gravitational waves from a universe filled with primordial black holes. JCAP, 03:053, 2021.
  42. Yu N Eroshenko. Gravitational waves from primordial black holes collisions in binary systems. Journal of Physics: Conference Series, 1051(1):012010, jul 2018.
  43. Stochastic gravitational-wave background as a tool for investigating multi-channel astrophysical and primordial black-hole mergers. A&A, 660:A26, 2022.
  44. Primordial black holes and gravitational waves from non-canonical inflation. Journal of Cosmology and Astroparticle Physics, 2023(03):003, mar 2023.
  45. Massive primordial black holes in contemporary universe. Bulg. Astron. J., 34:2021, 5 2019.
  46. Primordial seeds of supermassive black holes. Phys. Lett. B, 711:1–5, 2012.
  47. Norbert Duechting. Supermassive black holes from primordial black hole seeds. Phys. Rev. D, 70:064015, 2004.
  48. Signatures of primordial black holes as seeds of supermassive black holes. Journal of Cosmology and Astroparticle Physics, 2018(05):017, may 2018.
  49. Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23:347–356, Jan 1981.
  50. Constraints on the primordial curvature perturbation from primordial black holes. JCAP, 03:010, 2007.
  51. Forming sub-horizon black holes at the end of inflation. JCAP, 01:011, 2006.
  52. Formation of subhorizon black holes from preheating. Phys. Rev. D, 89(8):083008, 2014.
  53. Cosmological perturbations. Phys. Rept., 475:1–51, 2009.
  54. Misao Sasaki. Large Scale Quantum Fluctuations in the Inflationary Universe. Prog. Theor. Phys., 76:1036, 1986.
  55. Viatcheslav F. Mukhanov. Quantum Theory of Gauge Invariant Cosmological Perturbations. Sov. Phys. JETP, 67:1297–1302, 1988.
  56. Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020.
  57. Black hole relics and inflation: Limits on blue perturbation spectra. Phys. Rev. D, 50:4853–4867, 1994.
  58. Observational constraints on the primordial curvature power spectrum. Journal of Cosmology and Astroparticle Physics, 2018(01):007, jan 2018.
  59. Rouzbeh Allahverdi et al. The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe. 6 2020.
  60. Particle Production in the New Inflationary Cosmology. Phys. Lett. B, 117:29, 1982.
  61. Reheating an inflationary universe. Phys. Rev. Lett., 48:1437–1440, May 1982.
  62. Preheating of fermions. Phys. Lett. B, 448:6–12, 1999.
  63. Polynomial α𝛼\alphaitalic_α-attractors. Journal of Cosmology and Astroparticle Physics, 2022(04):017, apr 2022.
  64. Multi-field inflation with large scalar fluctuations: non-Gaussianity and perturbativity. 4 2023.
  65. Starobinsky-like inflationary models as avatars of no-scale supergravity. Journal of Cosmology and Astroparticle Physics, 2013(10):009, oct 2013.
  66. Superconformal Inflationary α𝛼\alphaitalic_α-Attractors. JHEP, 11:198, 2013.
  67. Non-minimal inflationary attractors. Journal of Cosmology and Astroparticle Physics, 2013(10):033, oct 2013.
  68. Gabriel Germán. New generalization of the simplest α𝛼\alphaitalic_α-attractor T𝑇Titalic_T model. Phys. Rev. D, 104(8):083015, 2021.
  69. Bayesian analysis for a class of α𝛼\alphaitalic_α-attractor inflationary models. JCAP, 03:038, 2023.
  70. Hydrodynamic representation of the klein-gordon-einstein equations in the weak field limit: General formalism and perturbations analysis. Phys. Rev. D, 92:023510, Jul 2015.
  71. Towards the theory of reheating after inflation. Phys. Rev. D, 56:3258–3295, 1997.
  72. Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation. JCAP, 09:034, 2010.
  73. Inflation dynamics and reheating. Rev. Mod. Phys., 78:537–589, 2006.
  74. Reheating after inflation. Phys. Rev. Lett., 73:3195–3198, 1994.
  75. N. W. (Norman William) McLachlan. Theory and application of Mathieu functions / by N.W. McLachlan. Dover books on engineering and engineering physics. Dover Publications, New York, 1964.
  76. The primordial density perturbation: Cosmology, inflation and the origin of structure. 2009.
  77. Primordial black hole production due to preheating. Phys. Rev. D, 64:021301, 2001.
  78. Classical decay of inflaton. Phys. Rev. Lett., 77:219–222, 1996.
  79. First order nonthermal phase transition after preheating. Phys. Rev. Lett., 81:2012–2015, 1998.
  80. LATTICEEASY: A Program for lattice simulations of scalar fields in an expanding universe. Comput. Phys. Commun., 178:929–932, 2008.
  81. The Development of equilibrium after preheating. Phys. Rev. D, 63:103503, 2001.
  82. Turbulent thermalization. Phys. Rev. D, 70:043538, 2004.
  83. Jo Repond and Javier Rubio. Combined Preheating on the lattice with applications to Higgs inflation. JCAP, 07:043, 2016.
  84. Preheating in Palatini Higgs inflation on the lattice. JCAP, 09:015, 2022.
  85. The art of simulating the early Universe – Part I. JCAP, 04:035, 2021.
  86. CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe. Comput. Phys. Commun., 283:108586, 2023.
  87. Andrei V. Frolov. DEFROST: A New Code for Simulating Preheating after Inflation. JCAP, 11:009, 2008.
  88. Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity. Phys. Rev. D, 60:084002, 1999.
  89. Jens C. Niemeyer and K. Jedamzik. Dynamics of primordial black hole formation. Phys. Rev. D, 59:124013, 1999.
  90. Threshold of primordial black hole formation. Phys. Rev. D, 88(8):084051, 2013. [Erratum: Phys.Rev.D 89, 029903 (2014)].
  91. Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation. JCAP, 01:037, 2014.
  92. Numerical Simulation of Primordial Black Hole Formation. JPS Conf. Proc., 1:013115, 2014.
  93. The hydrodynamics of primordial black hole formation. sovast, 22:129–138, April 1978.
  94. The Hydrodynamics of Primordial Black Hole Formation - Dependence on the Equation of State. sovast, 24:147–151, April 1980.
  95. Lifetime of Pulsating Solitons in Some Classical Models. Pisma Zh. Eksp. Teor. Fiz., 24:15–18, 1976.
  96. Marcelo Gleiser. Pseudostable bubbles. Phys. Rev. D, 49:2978–2981, 1994.
  97. Andrei D. Linde. Particle physics and inflationary cosmology, volume 5. 1990.
  98. Nonlinear axion dynamics and formation of cosmological pseudosolitons. Phys. Rev. D, 49:5040–5051, 1994.
  99. Oscillons: Resonant configurations during bubble collapse. Phys. Rev. D, 52:1920–1933, 1995.
  100. Fine structure of oscillons in the spherically symmetric phi**4 Klein-Gordon model. Phys. Rev. D, 65:084037, 2002.
  101. Oscillons and Quasi-breathers in the phi**4 Klein-Gordon model. Phys. Rev. D, 74:124003, 2006.
  102. Oscillons from Pure Natural Inflation. Phys. Rev. D, 98(4):043531, 2018.
  103. Oscillons After Inflation. Phys. Rev. Lett., 108:241302, 2012.
  104. Oscillons from String Moduli. JHEP, 01:083, 2018.
  105. Primordial Black Holes from Inflaton Fragmentation into Oscillons. Phys. Rev. D, 98(8):083513, 2018.
  106. Analytic Description of Primordial Black Hole Formation from Scalar Field Fragmentation. JCAP, 10:077, 2019.
  107. Are black holes over-produced during preheating? Phys. Rev. D, 71:063507, 2005.
  108. The cosmology of black hole relics. Phys. Rev. D, 46:645–657, Jul 1992.
  109. E. Torres-Lomas and L. Arturo Ureña-LAlpez. Primordial black hole production during preheating in a chaotic inflationary model. AIP Conf. Proc., 1548(1):238–243, 2013.
  110. Lattice Simulations of Axion-U(1) Inflation. 4 2022.
  111. Mustafa A. Amin. Inflaton fragmentation: Emergence of pseudo-stable inflaton lumps (oscillons) after inflation. 6 2010.
  112. Inflaton fragmentation and oscillon formation in three dimensions. Journal of Cosmology and Astroparticle Physics, 2010(12):001, dec 2010.
  113. Self-resonance after inflation: Oscillons, transients, and radiation domination. Phys. Rev. D, 97:023533, Jan 2018.
  114. Efficient self-resonance instability from axions. JCAP, 06:055, 2019.
  115. Equation of state and duration to radiation domination after inflation. Phys. Rev. Lett., 119:061301, Aug 2017.
  116. Oscillons after inflation. Phys. Rev. Lett., 108:241302, Jun 2012.
  117. Collapse of small-scale density perturbations during preheating in single field inflation. Journal of Cosmology and Astroparticle Physics, 2010(09):034, sep 2010.
  118. Delayed reheating and the breakdown of coherent oscillations. Journal of Cosmology and Astroparticle Physics, 2011(04):027, apr 2011.
  119. Primordial black hole formation with full numerical relativity. JCAP, 03(03):029, 2022.
  120. Long-wavelength nonlinear perturbations of a complex scalar field. Phys. Rev. D, 104(8):083513, 2021.
  121. COSMOLOGY, PRIMORDIAL BLACK HOLES, AND SUPERMASSIVE PARTICLES. Sov. Phys. Usp., 28:213–232, 1985.
  122. PRIMORDIAL BLACK HOLES AS A COSMOLOGICAL TEST OF GRAND UNIFICATION. Phys. Lett. B, 97:383–387, 1980.
  123. Ya. B. Zel’dovich. Gravitational instability: An approximate theory for large density perturbations. aap, 5:84–89, March 1970.
  124. Magic Without Magic: John Archibald Wheeler: A Collection of Essays in Honor of His Sixtieth Birthday. W. H. Freeman, 1972.
  125. A G Doroshkevich. Spatial structure of perturbations and origin of galactic rotation in fluctuation theory. Astrophysics (Engl. Transl.), v. 6, no. 4, pp. 320-330, 1 1970.
  126. Spinning primordial black holes formed during a matter-dominated era. 6 2023.
  127. Sergio M. C. V. Goncalves. Black hole formation from massive scalar field collapse in the Einstein-de Sitter universe. Phys. Rev. D, 62:124006, 2000.
  128. Jens C. Niemeyer and K. Jedamzik. Near-critical gravitational collapse and the initial mass function of primordial black holes. Phys. Rev. Lett., 80:5481–5484, 1998.
  129. Cosmological scalar field perturbations can grow. Phys. Rev. D, 92(6):063508, 2015.
  130. Nonlinear cosmological spherical collapse of quintessence. Phys. Rev. D, 93(4):043533, 2016.
  131. Lighting the Dark: Evolution of the Postinflationary Universe. Phys. Rev. Lett., 124(6):061301, 2020.
  132. Inflaton clusters and inflaton stars. JCAP, 07:030, 2020.
  133. Formation of inflaton halos after inflation. Phys. Rev. D, 103(6):063525, 2021.
  134. Gravitational collapse in the postinflationary Universe. Phys. Rev. D, 105(2):023516, 2022.
  135. Stochastic gravitational waves from postinflationary structure formation. Phys. Rev. D, 107(4):043503, 2023.
  136. Pierre-Henri Chavanis. Maximum mass of relativistic self-gravitating Bose-Einstein condensates with repulsive or attractive —φ𝜑\varphiitalic_φ—4 self-interaction. Phys. Rev. D, 107(10):103503, 2023.
  137. Jens C. Niemeyer. Small-scale structure of fuzzy and axion-like dark matter. 12 2019.
  138. David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden” variables. i. Phys. Rev., 85:166–179, Jan 1952.
  139. David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden” variables. ii. Phys. Rev., 85:180–193, Jan 1952.
  140. Robert E Wyatt. Quantum dynamics with trajectories: introduction to quantum hydrodynamics, volume 28. Springer Science & Business Media, 2005.
  141. Erwin Madelung. Quantentheorie in hydrodynamischer form. Zeitschrift für Physik, 40:322–326, 1927.
  142. Takehiko Takabayasi. The Formulation of Quantum Mechanics in terms of Ensemble in Phase Space. Progress of Theoretical Physics, 11(4-5):341–373, 04 1954.
  143. Core-envelope haloes in scalar field dark matter with repulsive self-interaction: fluid dynamics beyond the de Broglie wavelength. Mon. Not. Roy. Astron. Soc., 506(2):2418–2444, 2021.
  144. E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749–759, Jun 1932.
  145. Gravitational Bose-Einstein condensation in the kinetic regime. Phys. Rev. Lett., 121(15):151301, 2018.
  146. Evolution of the Schrodinger-Newton system for a selfgravitating scalar field. Phys. Rev. D, 69:124033, 2004.
  147. Gravitational cooling of self-gravitating Bose-Condensates. Astrophys. J., 645:814–819, 2006.
  148. Construction and Evolution of Equilibrium Configurations of the Schrödinger–Poisson System in the Madelung Frame. Universe, 8(8):432, 2022.
  149. F. Siddhartha Guzmán and L. Arturo Ureña López. Evolution of the schrödinger-newton system for a self-gravitating scalar field. Phys. Rev. D, 69:124033, Jun 2004.
  150. Gravitational cooling of self-gravitating bose condensates. The Astrophysical Journal, 645(2):814, jul 2006.
  151. Pierre-Henri Chavanis. Mass-radius relation of newtonian self-gravitating bose-einstein condensates with short-range interactions. i. analytical results. Phys. Rev. D, 84:043531, Aug 2011.
  152. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev., 187:1767–1783, Nov 1969.
  153. E. Seidel and W. M. Suen. Oscillating soliton stars. Phys. Rev. Lett., 66:1659–1662, 1991.
  154. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett., 72:2516–2519, Apr 1994.
  155. Galactic collapse of scalar field dark matter. Class. Quant. Grav., 19:5017, 2002.
  156. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett., 72:2516–2519, 1994.
  157. Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95:043541, Feb 2017.
  158. F. S. Guzmán. The three dynamical fates of Boson Stars. Rev. Mex. Fis., 55:321–326, 2009.
  159. E. Seidel and W.-M. Suen. Dynamical evolution of boson stars: Perturbing the ground state. Phys. Rev. D, 42:384–403, July 1990.
  160. Numerical evidence for “multiscalar stars”. Phys. Rev. D, 67(2):024010, January 2003.
  161. L. A. Ureña-López. Bose-Einstein condensation of relativistic Scalar Field Dark Matter. jcap, 1:014, jan 2009.
  162. Multistate boson stars. Physical Review D, 81(4):044031, 2010.
  163. L. A. Ureña-López and A. Bernal. Bosonic gas as a galactic dark matter halo. Phys. Rev. D, 82(12):123535, December 2010.
  164. Flux analysis, the correspondence principle, and the structure of quantum phase space. Phys. Rev. A, 40:2894–2916, Sep 1989.
  165. Using the Schroedinger Equation to Simulate Collisionless Matter. apjl, 416:L71, October 1993.
  166. Schrödinger-poisson–vlasov-poisson correspondence. Phys. Rev. D, 97:083519, Apr 2018.
  167. Solving the vlasov equation in two spatial dimensions with the schrödinger method. Phys. Rev. D, 96:123532, Dec 2017.
  168. Kôdi HUSIMI. Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22(4):264–314, 1940.
  169. Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10(7):496–499, July 2014.
  170. Understanding the core-halo relation of quantum wave dark matter from 3d simulations. Phys. Rev. Lett., 113:261302, Dec 2014.
  171. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies. Phys. Rev. D, 94(4):043513, 2016.
  172. Cosmological particle-in-cell simulations with ultralight axion dark matter. Phys. Rev. D, 94:123523, Dec 2016.
  173. Effect of boundary conditions on structure formation in fuzzy dark matter. Phys. Rev. D, 107(12):123524, 2023.
  174. Galaxy formation with becdm–i. turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 471(4):4559–4570, 2017.
  175. Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Physical Review D, 98(8):083027, 2018.
  176. Ultralight dark matter in disk galaxies. Phys. Rev. D, 99:103020, May 2019.
  177. Pierre-Henri Chavanis. Predictive model of bec dark matter halos with a solitonic core and an isothermal atmosphere. Phys. Rev. D, 100:083022, Oct 2019.
  178. Core-Halo Mass Relation in Scalar Field Dark Matter Models and its Consequences for the Formation of Supermassive Black Holes. Phys. Rev. D, 103(6):063012, 2021.
  179. Improved limits on the tensor-to-scalar ratio using bicep and p l a n c k data. Physical Review D, 105(8):083524, 2022.
  180. Constraints on primordial black holes for nonstandard cosmologies. 8 2023.
  181. Monodromy in the CMB: Gravity Waves and String Inflation. Phys. Rev. D, 78:106003, 2008.
  182. Gravity waves and linear inflation from axion monodromy. Physical Review D, 82(4):046003, 2010.
  183. Adiabatic cmb perturbations in pre-big-bang string cosmology. Nuclear Physics B, 626(1-2):395–409, 2002.
  184. Generating the curvature perturbation without an inflaton. Physics Letters B, 524(1-2):5–14, 2002.
  185. Multi-field inflation with large scalar fluctuations: non-gaussianity and perturbativity. arXiv preprint arXiv:2304.14260, 2023.
  186. Revisiting small-scale fluctuations in α𝛼\alphaitalic_α-attractor models of inflation. JCAP, 06(06):007, 2022.
  187. Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J., 187:425–438, 1974.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.