Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Nonlocal growth of quantum conditional mutual information under decoherence (2402.03439v3)

Published 5 Feb 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Local measurements cannot create entanglement, but they can convert short-range entanglement to long-range entanglement, as in quantum teleportation. This phenomenon of measurement-induced entanglement (MIE) has been widely discussed in recent work on measurement-induced entanglement phase transitions and related phenomena. Here, we situate MIE in a broader context of the growth of long-range conditional mutual information (CMI) under decoherence. We upper-bound the rate at which decoherence can generate long-range CMI, and derive a characterization of states that saturate this bound. We point out that the structure of states saturating the CMI upper bound can be very different under different decoherent dynamics and provide explicit examples. We additionally explore the dynamics of CMI in random quantum circuits subject to random local decoherence, as a function of circuit depth. We argue that the universality class of the finite-depth teleportation transition, as well as its lower critical dimension, are different for erasures than for measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
  3. E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Communications in Mathematical Physics 28, 251 (1972).
  4. S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order, Physical Review Letters 97, 050401 (2006), quant-ph/0603121 .
  5. Y. Bao, M. Block, and E. Altman, Finite time teleportation phase transition in random quantum circuits, arXiv 10.48550/arXiv.2110.06963 (2021), 2110.06963 .
  6. A.-R. Negari, S. Sahu, and T. H. Hsieh, Measurement-induced phase transitions in the toric code, arXiv 10.48550/arXiv.2307.02292 (2023), 2307.02292 .
  7. F. Verstraete, M. Popp, and J. I. Cirac, Entanglement versus Correlations in Spin Systems, Physical Review Letters 92, 4 (2004a), quant-ph/0307009 .
  8. F. Verstraete, M. A. Martín-Delgado, and J. I. Cirac, Diverging Entanglement Length in Gapped Quantum Spin Systems, Physical Review Letters 92, 087201 (2004b), quant-ph/0311087 .
  9. L. Piroli, G. Styliaris, and J. I. Cirac, Quantum Circuits Assisted by Local Operations and Classical Communication: Transformations and Phases of Matter, Physical Review Letters 127, 220503 (2021), 2103.13367 .
  10. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of High Energy Physics 2007, 120 (2007), 0708.4025 .
  11. E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum‐mechanical entropy, Journal of Mathematical Physics 14, 1938 (2003), https://pubs.aip.org/aip/jmp/article-pdf/14/12/1938/8146113/1938_1_online.pdf .
  12. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
  13. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
  14. D. PETZ, SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS, The Quarterly Journal of Mathematics 39, 97 (1988).
  15. H. Barnum and E. Knill, Reversing quantum dynamics with near-optimal quantum and classical fidelity, Journal of Mathematical Physics 43, 2097 (2002).
  16. G. E. Crooks, Quantum operation time reversal, Phys. Rev. A 77, 034101 (2008).
  17. K. Kato and F. G. S. L. Brandão, Quantum Approximate Markov Chains are Thermal, Communications in Mathematical Physics 370, 117 (2019), 1609.06636 .
  18. T. Kuwahara, K. Kato, and F. G. S. L. Brandão, Clustering of conditional mutual information for quantum gibbs states above a threshold temperature, Phys. Rev. Lett. 124, 220601 (2020).
  19. B. Shi, K. Kato, and I. H. Kim, Fusion rules from entanglement, Annals of Physics 418, 168164 (2020), 1906.09376 .
  20. B. Shi and I. H. Kim, Entanglement bootstrap approach for gapped domain walls, Phys. Rev. B 103, 115150 (2021a).
  21. B. Shi and I. H. Kim, Domain wall topological entanglement entropy, Phys. Rev. Lett. 126, 141602 (2021b).
  22. I. H. Kim, Entropy scaling law and the quantum marginal problem, Phys. Rev. X 11, 021039 (2021a).
  23. I. H. Kim, Entropy scaling law and the quantum marginal problem: simplification and generalization, arXiv 10.48550/arXiv.2109.11688 (2021b), 2109.11688 .
  24. B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv 10.48550/arxiv.1710.03363 (2017), 1710.03363 .
  25. B. Yoshida, Recovery algorithms for Clifford Hayden-Preskill problem, arXiv 10.48550/arxiv.2106.15628 (2021), 2106.15628 .
  26. D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
  27. F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Local Random Quantum Circuits are Approximate Polynomial-Designs, Communications in Mathematical Physics 346, 397 (2016), 1208.0692 .
  28. N. Hunter-Jones, Unitary designs from statistical mechanics in random quantum circuits, arXiv 10.48550/arXiv.1905.12053 (2019), 1905.12053 .
  29. Y. Imry and S.-k. Ma, Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35, 1399 (1975).
  30. We note that this phenomena was firstly discovered in [Lee, Jiang] in a slightly different setup. We thank the authors for useful discussions.
  31. S. Lee and L. Jiang, in preparation.
  32. T. Furuta, Operator monotone functions, A >>> B >>> 0 and logA >>> logB, Journal of Mathematical Inequalities , 93 (2007).
  33. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Physical Review B 101, 104301 (2020), 1908.04305 .
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.