Addressing the problem of the LIGO-Virgo-KAGRA visibility in the scientific literature (2402.03359v1)
Abstract: As members of the Virgo Collaboration -- one of the large scientific collaborations that explore the universe of gravitational waves together with the LIGO Scientific Collaboration and the KAGRA Collaboration -- we became aware of biased citation practices that exclude Virgo, as well as KAGRA, from achievements that collectively belong to the wider LIGO/Virgo/KAGRA Collaboration. Here, we frame these practices in the context of Merton's Matthew effect, extending the reach of this well studied cognitive bias to include large international scientific collaborations. We provide qualitative evidence of its occurrence, displaying the network of links among published papers in the scientific literature related to Gravitational Wave science. We note how the keyword LIGO is linked to a much larger number of papers and variety of subjects than the keyword Virgo. We support these qualitative observations with a quantitative study based on a year-long monitoring of the relevant literature, where we scan all new preprints appearing in the arXiv electronic preprint database. Over the course of one year we identified all preprints failing to assign due credits to Virgo. As a further step, we undertook positive actions by asking the authors of problematic papers to correct them. We also report on a more in-depth investigation which we performed on problematic preprints that appeared in the first three months of the period under consideration, checking how frequently their authors reacted positively to our request and corrected their papers. Finally, we measure the global impact of papers classified as problematic and observe that, thanks to the changes implemented in response to our requests, the global impact (measured as the number of citations of papers which still contain Virgo visibility issues) was halved. We conclude the paper with general considerations for future work in a wider perspective.
- Zuckerman, H.: Scientific Elite: Nobel Laureates in the United States. The Free Press, New York (1977) Merton [1996] Merton, R.K.: On Social Structure and Science. University of Chicago Press, Chicago (1996) Merton [1968] Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Merton, R.K.: On Social Structure and Science. University of Chicago Press, Chicago (1996) Merton [1968] Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Merton, R.K.: On Social Structure and Science. University of Chicago Press, Chicago (1996) Merton [1968] Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Merton, R.K.: The Matthew Effect in Science. Science 159(3810), 56–63 (1968) https://doi.org/10.1126/science.159.3810.56 Liao [2021] Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Liao, C.H.: The Matthew effect and the halo effect in research funding. Journal of Informetrics 15(1), 101108 (2021) https://doi.org/10.1016/j.joi.2020.101108 Zhang et al. [2022] Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Zhang, S., Wapman, K.H., Larremore, D.B., Clauset, A.: Labor advantages drive the greater productivity of faculty at elite universities. Science Advances 8(46), 7056 (2022) https://doi.org/10.1126/sciadv.abq7056 Perc [2014] Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Perc, M.: The Matthew effect in empirical data. Journal of The Royal Society Interface 11(98), 20140378 (2014) https://doi.org/10.1098/rsif.2014.0378 Katchanov et al. [2023] Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Katchanov, Y.L., Markova, Y.V., Shmatko, N.A.: Empirical demonstration of the Matthew effect in scientific research careers. Journal of Informetrics 17(4), 101465 (2023) https://doi.org/10.1016/j.joi.2023.101465 LIGO Scientific Collaboration and Virgo Collaboration [2016] LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- LIGO Scientific Collaboration, Virgo Collaboration: Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters 116(6), 061102 (2016) https://doi.org/10.1103/PhysRevLett.116.061102 arXiv:1602.03837 [gr-qc] Einstein [1916] Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 688–696 (1916) Rothman [2018] Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Rothman, T.: The Secret History of Gravitational Waves: Contrary to popular belief, Einstein was not the first to conceive of gravitational waves–but he was, eventually, the first to get the concept right. American Scientist 106(2), 96–104 (2018) Cervantes-Cota et al. [2016] Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Cervantes-Cota, J.L., Galindo-Uribarri, S., Smoot, G.F.: A brief history of gravitational waves. Universe 2(3), 22 (2016) https://doi.org/10.3390/universe2030022 Abbott et al. [2023] Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Abbott, B.P., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. To appear in Physical Review X (2023) arXiv:2111.03606 [gr-qc] [14] LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- LSC - LIGO Scientific Collaboration. https://www.ligo.org/about.php. Accessed: 08-11-2023 [15] VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- VMD Public. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 [16] KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- KAGRA Collaboration - KAGRA Large-scale Cryogenic Graviational wave Telescope Project. https://apps.virgo-gw.eu/vmd/public/institutions. Accessed: 08-11-2023 Van Eck and Waltman [2022] Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Van Eck, N.J., Waltman, L.: VOSviewer Online. https://doi.org/10.5281/zenodo.7257222 Birkle et al. [2020] Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J.: Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1(1), 363–376 (2020) https://doi.org/10.1162/qss_a_00018 Abbott et al. [2017] Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 119, 161101 (2017) https://doi.org/10.1103/PhysRevLett.119.161101 Branchesi [2016] Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Branchesi, M.: Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. In: Journal of Physics: Conference Series, vol. 718, p. 022004 (2016). https://doi.org/10.1088/1742-6596/718/2/022004 . IOP Publishing Abbott et al. [2017] Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Abbott, B.P., et al.: Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848(2), 12 (2017) https://doi.org/10.3847/2041-8213/aa91c9 arXiv:1710.05833 [astro-ph.HE] [22] arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- arXiv. https://arxiv.org/. Accessed: 09-11-2023 Martín-Martín et al. [2018] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12(4), 1160–1177 (2018) https://doi.org/10.1016/j.joi.2018.09.002 [24] LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023 LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
- LVKVisibility. https://github.com/edymil/LVKVisibility. Accessed: 09-11-2023
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.