Papers
Topics
Authors
Recent
2000 character limit reached

Dark counts in optical superconducting transition-edge sensors for rare-event searches

Published 5 Feb 2024 in physics.ins-det, cond-mat.supr-con, and hep-ex | (2402.03073v4)

Abstract: Superconducting transition-edge sensors (TESs) are a type of quantum sensor known for its high single-photon detection efficiency and low background. This makes them ideal for particle physics experiments searching for rare events. In this work, we present a comprehensive characterization of the background in optical TESs, distinguishing three types of events: electrical-noise, high-energy, and photonlike events. We introduce computational methods to automate the classification of events. For the first time, we experimentally verify and simulate the source of the high-energy events. We also isolate the photonlike events, the expected signal in dielectric haloscopes searching for dark matter dark photons, and achieve a record-low photonlike dark-count rate of $3.6 \times 10{-4}$ Hz in the 0.8-3.2 eV energy range.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, The physics of the dark photon: a primer (Springer, 2021).
  2. M. Baryakhtar, J. Huang, and R. Lasenby, Physical Review D 98, 035006 (2018).
  3. K. Irwin, Applied Physics Letters 66, 1998 (1995).
  4. S. Wold, K. Esbensen, and P. Geladi, Chemometrics and Intelligent Laboratory Systems 2, 37 (1987), proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.
  5. D. Arthur and S. Vassilvitskii, in ACM-SIAM Symposium on Discrete Algorithms (2007).
  6. C. Hagmann, D. Lange, and D. Wright, in 2007 IEEE Nuclear Science Symposium Conference Record, Vol. 2 (2007) pp. 1143–1146.
  7. J. Dreyling-Eschweiler, A superconducting microcalorimeter for low-flux detection of near-infrared single photons, Tech. Rep. (Deutsches Elektronen-Synchrotron (DESY), 2014).
  8. nyuad astroparticle: tes analysis (2024a), https://github.com/nyuad-astroparticle/TES-analysis.
  9. nyuad astroparticle: tes geant (2024b), https://github.com/nyuad-astroparticle/tes-geant.
  10. Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett. 116, 011301 (2016), arXiv:1504.07237 [hep-ph] .
  11. H. An, M. Pospelov, and J. Pradler, Phys. Rev. Lett. 111, 041302 (2013), arXiv:1304.3461 [hep-ph] .
  12. J. M. Martinis and J. Clarke, Journal of low temperature physics 61, 227 (1985).
  13. K. D. Irwin and G. C. Hilton, Cryogenic particle detection , 63 (2005).
  14. N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1982).
  15. R. P. Feynman, Phys. Rev. 94, 262 (1954).
  16. A. Einstein, Yu. Podolsky, and N. Rosen (EPR), Phys. Rev. 47, 777 (1935).
  17. J. G. P. Berman and J. F. M. Izrailev, Physica D 88, 445 (1983).
  18. E. B. Davies and L. Parns, Q. J. Mech. Appl. Math. 51, 477 (1988).
  19. E. Witten,  (2001), hep-th/0106109 .
  20. J. S. Smith and G. W. Johnson, Philos. Trans. R. Soc. London, Ser. B 777, 1395 (2005).
  21. W. J. Smith, T. J. Johnson, and B. G. Miller (2010a), J. Appl. Phys. (unpublished).
  22. V. K. Smith, K. Johnson, and M. O. Klein (2010b), J. Appl. Phys. (submitted).
  23. U.Â Ăœnderwood, N. Ñet, and P. P̀„ot (1988), talk at Fanstord University (A full UNPUBLISHED entry).
  24. W. V. Oz and M. Yannakakis, eds., Proc. Fifteenth Annual, All ACM Conferences No. 17, ACM (Academic Press, Boston, 1983) a full PROCEEDINGS entry.
  25. Y. Burstyn (2004), (unpublished).
  26. A. G. Agarwal, Semiconductors 66, 1238 (2001).
  27. Y. M. Zalkins, e-print arXiv:cond-mat/040426 (2008).
  28. J. Nelson, U.S. Patent No. 5,693,000 (12 Dec. 2005).
  29. J. K. Nelson, M.S. thesis, New York University (1999).
  30. É. Masterly, Mastering Thesis Writing, Master’s project, Stanford University, English Department (1988), a full MASTERSTHESIS entry.
  31. S. M. Smith, Ph.D. thesis, Massachusetts Institute of Technology (2003).
  32. S. R. Kawa and S.-J. Lin, J. Geophys. Res. 108, 4201 (2003), DOI:10.1029/2002JD002268.
  33. F. P. Phony-Baloney, Fighting Fire with Fire: Festooning French Phrases, PhD dissertation, Fanstord University, Department of French (1988), a full PHDTHESIS entry.
  34. J. C. Knvth, The programming of computer art, Vernier Art Center, Stanford, California (1988), a full BOOKLET entry.
  35. W. Opechowski and R. Guccione, Introduction to the theory of normal metals, in Magnetism, Vol. IIa, edited by G. T. Rado and H. Suhl (Academic Press, New York, 1965) p. 105.
  36. W. Opechowski and R. Guccione, in Magnetism, Vol. IIa, edited by G. T. Rado and H. Suhl (Academic Press, New York, 1965) p. 105.
  37. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971), [Sov. Phys. JETP 34, 62 (1972)].
  38. J. M. Smith, in Molecular Dynamics, edited by C. Brown (Academic, New York, 1980).
  39. L. Manmaker, The Definitive Computer Manual, Chips-R-Us, Silicon Valley, silver ed. (1986), a full MANUAL entry.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 4 likes about this paper.