Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Block-Sparse Tensor Recovery (2402.02410v2)

Published 4 Feb 2024 in eess.SP

Abstract: This work explores the fundamental problem of the recoverability of a sparse tensor being reconstructed from its compressed embodiment. We present a generalized model of block-sparse tensor recovery as a theoretical foundation, where concepts measuring holistic mutual incoherence property (MIP) of the measurement matrix set are defined. A representative algorithm based on the orthogonal matching pursuit (OMP) framework, called tensor generalized block OMP (T-GBOMP), is applied to the theoretical framework elaborated for analyzing both noiseless and noisy recovery conditions. Specifically, we present the exact recovery condition (ERC) and sufficient conditions for establishing it with consideration of different degrees of restriction. Reliable reconstruction conditions, in terms of the residual convergence, the estimated error and the signal-to-noise ratio bound, are established to reveal the computable theoretical interpretability based on the newly defined MIP, which we introduce. The flexibility of tensor recovery is highlighted, i.e., the reliable recovery can be guaranteed by optimizing MIP of the measurement matrix set. Analytical comparisons demonstrate that the theoretical results developed are tighter and less restrictive than the existing ones (if any). Further discussions provide tensor extensions for several classic greedy algorithms, indicating that the sophisticated results derived are universal and applicable to all these tensorized variants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: