Papers
Topics
Authors
Recent
2000 character limit reached

Data Poisoning for In-context Learning (2402.02160v3)

Published 3 Feb 2024 in cs.CR

Abstract: In the domain of LLMs, in-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks, relying on examples rather than retraining or fine-tuning. This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks, an area not yet fully explored. We wonder whether ICL is vulnerable, with adversaries capable of manipulating example data to degrade model performance. To address this, we introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL. Our approach uniquely employs discrete text perturbations to strategically influence the hidden states of LLMs during the ICL process. We outline three representative strategies to implement attacks under our framework, each rigorously evaluated across a variety of models and tasks. Our comprehensive tests, including trials on the sophisticated GPT-4 model, demonstrate that ICL's performance is significantly compromised under our framework. These revelations indicate an urgent need for enhanced defense mechanisms to safeguard the integrity and reliability of LLMs in applications relying on in-context learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.