Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accelerating Look-ahead in Bayesian Optimization: Multilevel Monte Carlo is All you Need

Published 3 Feb 2024 in stat.ML, cs.LG, math.OC, math.PR, stat.CO, and stat.ME | (2402.02111v2)

Abstract: We leverage multilevel Monte Carlo (MLMC) to improve the performance of multi-step look-ahead Bayesian optimization (BO) methods that involve nested expectations and maximizations. Often these expectations must be computed by Monte Carlo (MC). The complexity rate of naive MC degrades for nested operations, whereas MLMC is capable of achieving the canonical MC convergence rate for this type of problem, independently of dimension and without any smoothness assumptions. Our theoretical study focuses on the approximation improvements for twoand three-step look-ahead acquisition functions, but, as we discuss, the approach is generalizable in various ways, including beyond the context of BO. Our findings are verified numerically and the benefits of MLMC for BO are illustrated on several benchmark examples. Code is available at https://github.com/Shangda-Yang/MLMCBO .

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 6 tweets with 55 likes about this paper.