Papers
Topics
Authors
Recent
2000 character limit reached

Parsimonious Learning-Augmented Approximations for Dense Instances of $\mathcal{NP}$-hard Problems (2402.02062v2)

Published 3 Feb 2024 in cs.DS

Abstract: The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.