Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Path Planning via Learning from Demonstrations for Robotic Catheters in Deformable Environments (2402.00537v2)

Published 1 Feb 2024 in cs.RO

Abstract: Objective: Navigation through tortuous and deformable vessels using catheters with limited steering capability underscores the need for reliable path planning. State-of-the-art path planners do not fully account for the deformable nature of the environment. Methods: This work proposes a robust path planner via a learning from demonstrations method, named Curriculum Generative Adversarial Imitation Learning (C-GAIL). This path planning framework takes into account the interaction between steerable catheters and vessel walls and the deformable property of vessels. Results: In-silico comparative experiments show that the proposed network achieves a 38% higher success rate in static environments and 17% higher in dynamic environments compared to a state-of-the-art approach based on GAIL. In-vitro validation experiments indicate that the path generated by the proposed C-GAIL path planner achieves a targeting error of 1.26$\pm$0.55mm and a tracking error of 5.18$\pm$3.48mm. These results represent improvements of 41% and 40% over the conventional centerline-following technique for targeting error and tracking error, respectively. Conclusion: The proposed C-GAIL path planner outperforms the state-of-the-art GAIL approach. The in-vitro validation experiments demonstrate that the path generated by the proposed C-GAIL path planner aligns better with the actual steering capability of the pneumatic artificial muscle-driven catheter utilized in this study. Therefore, the proposed approach can provide enhanced support to the user in navigating the catheter towards the target with greater accuracy, effectively meeting clinical accuracy requirements. Significance: The proposed path planning framework exhibits superior performance in managing uncertainty associated with vessel deformation, thereby resulting in lower tracking errors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.