Papers
Topics
Authors
Recent
2000 character limit reached

Birational invariance of motivic zeta functions of $K$-trivial varieties, and obstructions to smooth fillings (2401.17772v1)

Published 31 Jan 2024 in math.AG

Abstract: The motivic zeta function of a smooth and proper $\mathbb{C}((t))$-variety $X$ with trivial canonical bundle is a rational function with coefficients in an appropriate Grothendieck ring of complex varieties, which measures how $X$ degenerates at $t=0$. In analogy with Igusa's monodromy conjecture for $p$-adic zeta functions of hypersurface singularities, we expect that the poles of the motivic zeta function of $X$ correspond to monodromy eigenvalues on the cohomology of $X$. In this paper, we prove that the motivic zeta function and the monodromy conjecture are preserved under birational equivalence, which extends the range of known cases. As a further application, we explain how the motivic zeta function acts as an obstruction to the existence of a smooth filling for $X$ at $t=0$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.