Optical Tactile Sensing for Aerial Multi-Contact Interaction: Design, Integration, and Evaluation
Abstract: Distributed tactile sensing for multi-force detection is crucial for various aerial robot interaction tasks. However, current contact sensing solutions on drones only exploit single end-effector sensors and cannot provide distributed multi-contact sensing. Designed to be easily mounted at the bottom of a drone, we propose an optical tactile sensor that features a large and curved soft sensing surface, a hollow structure and a new illumination system. Even when spaced only 2 cm apart, multiple contacts can be detected simultaneously using our software pipeline, which provides real-world quantities of 3D contact locations (mm) and 3D force vectors (N), with an accuracy of 1.5 mm and 0.17 N respectively. We demonstrate the sensor's applicability and reliability onboard and in real-time with two demos related to i) the estimation of the compliance of different perches and subsequent re-alignment and landing on the stiffer one, and ii) the mapping of sparse obstacles. The implementation of our distributed tactile sensor represents a significant step towards attaining the full potential of drones as versatile robots capable of interacting with and navigating within complex environments.
- D. Floreano and R. Wood, “Science, technology and the future of small autonomous drones,” Nature, vol. 521, pp. 460–6, 05 2015.
- J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart, and D. Scaramuzza, “The current state and future outlook of rescue robotics,” Journal of Field Robotics, vol. 36, no. 7, pp. 1171–1191, 2019.
- S. Asseng and F. Asche, “Future farms without farmers,” Science Robotics, vol. 4, no. 27, p. eaaw1875, 2019.
- T. Petso and R. S. Jamisola, “Wildlife conservation using drones and artificial intelligence in africa,” Science Robotics, vol. 8, no. 85, p. eadm7008, 2023.
- A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza, “Learning high-speed flight in the wild,” Science Robotics, vol. 6, no. 59, p. eabg5810, 2021.
- X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, and F. Gao, “Swarm of micro flying robots in the wild,” Science Robotics, vol. 7, no. 66, p. eabm5954, 2022.
- C. Geckeler, E. Aucone, Y. Schnider, A. Simeon, J.-P. v. Bassewitz, Y. Zhu, and S. Mintchev, “Learning occluded branch depth maps in forest environments using rgb-d images,” IEEE Robotics and Automation Letters, pp. 1–8, 2024.
- A. Briod, P. Kornatowski, J.-C. Zufferey, and D. Floreano, “A collision-resilient flying robot,” Journal of Field Robotics, vol. 31, no. 4, pp. 496–509, 2014.
- N. Khedekar, F. Mascarich, C. Papachristos, T. Dang, and K. Alexis, “Contact–based navigation path planning for aerial robots,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 4161–4167.
- K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfändler, U. Angst, R. Siegwart, and J. Nieto, “Active interaction force control for contact-based inspection with a fully actuated aerial vehicle,” IEEE Transactions on Robotics, vol. 37, no. 3, pp. 709–722, 2021.
- H. W. Wopereis, W. L. W. van de Ridder, T. J. W. Lankhorst, L. Klooster, E. M. Bukai, D. Wuthier, G. Nikolakopoulos, S. Stramigioli, J. B. C. Engelen, and M. Fumagalli, “Multimodal aerial locomotion: An approach to active tool handling,” IEEE Robotics &\&& Automation Magazine, vol. 25, no. 4, pp. 57–65, 2018.
- S. Hamaza, I. Georgilas, M. Fernandez, P. Sanchez, T. Richardson, G. Heredia, and A. Ollero, “Sensor installation and retrieval operations using an unmanned aerial manipulator,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2793–2800, 2019.
- C. Geckeler and S. Mintchev, “Bistable helical origami gripper for sensor placement on branches,” Advanced Intelligent Systems, vol. 4, no. 10, p. 2200087, 2022.
- E. Aucone, S. Kirchgeorg, A. Valentini, L. Pellissier, K. Deiner, and S. Mintchev, “Drone-assisted collection of environmental dna from tree branches for biodiversity monitoring,” Science Robotics, vol. 8, no. 74, p. eadd5762, 2023.
- R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing—from humans to humanoids,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, 2010.
- H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics—a review,” Sensors and Actuators A: Physical, vol. 167, no. 2, pp. 171–187, 2011, solid-State Sensors, Actuators and Microsystems Workshop.
- R. S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, and V. J. Lumelsky, “Directions toward effective utilization of tactile skin: A review,” IEEE Sensors Journal, vol. 13, no. 11, pp. 4121–4138, 2013.
- C. Bartolozzi, L. Natale, F. Nori, and G. Metta, “Robots with a sense of touch,” Nature Materials, vol. 15, pp. 921–925, 2016.
- C. Fox, M. Evans, M. Pearson, and T. Prescott, “Tactile slam with a biomimetic whiskered robot,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 4925–4930.
- H. Kolvenbach, C. Bärtschi, L. Wellhausen, R. Grandia, and M. Hutter, “Haptic inspection of planetary soils with legged robots,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1626–1632, 2019.
- A. Vangen, T. Barnwal, J. A. Olsen, and K. Alexis, “Terrain recognition and contact force estimation through a sensorized paw for legged robots,” 2023.
- A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past, present, and future of aerial robotic manipulators,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 626–645, 2022.
- M. A. Trujillo, J. R. Martínez-de Dios, C. Martín, A. Viguria, and A. Ollero, “Novel aerial manipulator for accurate and robust industrial ndt contact inspection: A new tool for the oil and gas inspection industry,” Sensors, vol. 19, no. 6, 2019.
- M. Fumagalli, R. Naldi, A. Macchelli, F. Forte, A. Q. Keemink, S. Stramigioli, R. Carloni, and L. Marconi, “Developing an aerial manipulator prototype: Physical interaction with the environment,” IEEE Robotics & Automation Magazine, vol. 21, no. 3, pp. 41–50, Sep. 2014.
- T. Bartelds, A. Capra, S. Hamaza, S. Stramigioli, and M. Fumagalli, “Compliant aerial manipulators: Toward a new generation of aerial robotic workers,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 477–483, Jan. 2016.
- G. Nava, Q. Sablé, M. Tognon, D. Pucci, and A. Franchi, “Direct force feedback control and online multi-task optimization for aerial manipulators,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 331–338, Apr. 2020.
- D. Lee, H. Seo, I. Jang, S. J. Lee, and H. J. Kim, “Aerial manipulator pushing a movable structure using a dob-based robust controller,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 723–730, 2021.
- F. Benzi, M. Brunner, M. Tognon, C. Secchi, and R. Siegwart, “Adaptive tank-based control for aerial physical interaction with uncertain dynamic environments using energy-task estimation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9129–9136, 2022.
- E. Aucone, C. Geckeler, D. Morra, L. Pallottino, and S. Mintchev, “Synergistic morphology and feedback control for traversal of unknown compliant obstacles with aerial robots,” Preprint, available on Research Square: https://www.researchsquare.com/article/rs-3262987/v1, 2023.
- S. Rajappa, H. H. Bülthoff, and P. Stegagno, “Design and implementation of a novel architecture for physical human-UAV interaction,” The International Journal of Robotics Research, vol. 36, no. 5-7, pp. 800–819, May 2017.
- A. Briod, P. Kornatowski, A. Klaptocz, A. Garnier, M. Pagnamenta, J.-C. Zufferey, and D. Floreano, “Contact-based navigation for an autonomous flying robot,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3987–3992.
- C. Papachristos, S. Khattak, and K. Alexis, “Haptic feedback-based reactive navigation for aerial robots subject to localization failure,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–7.
- K. Shimonomura, “Tactile image sensors employing camera: A review,” Sensors, vol. 19, no. 18, 2019.
- S. Zhang, Z. Chen, Y. Gao, W. Wan, J. Shan, H. Xue, F. Sun, Y. Yang, and B. Fang, “Hardware technology of vision-based tactile sensor: A review,” IEEE Sensors Journal, vol. 22, no. 22, pp. 21 410–21 427, 2022.
- Y. Zhang, Z. Kan, Y. Yang, Y. A. Tse, and M. Y. Wang, “Effective estimation of contact force and torque for vision-based tactile sensors with helmholtz–hodge decomposition,” IEEE Robotics and Automation Letters, vol. 4, pp. 4094–4101, 2019.
- C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928, Feb. 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/4/928
- W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, Nov. 2017.
- S. Luo, W. Yuan, E. Adelson, A. G. Cohn, and R. Fuentes, “Vitac: Feature sharing between vision and tactile sensing for cloth texture recognition,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 2722–2727.
- X. Guo, G. He, M. Mousaei, J. Geng, G. Shi, and S. Scherer, “Aerial interaction with tactile sensing,” in Preprint, available on ArXiv: https://arxiv.org/abs/2310.00142, 2023.
- E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gelslim: A high-resolution, compact, robust, and calibrated tactile-sensing finger,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, oct 2018, pp. 1927–1934.
- M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer, D. Jayaraman, and R. Calandra, “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, pp. 3838–3845, 2020.
- B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, , and N. F. Lepora, “The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies,” Soft Robotics, pp. 3216–227, 2018.
- X. Lin and M. Wiertlewski, “Sensing the frictional state of a robotic skin via subtractive color mixing,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2386–2392, Jul. 2019.
- A. C. Abad and A. Ranasinghe, “Low-cost gelsight with uv markings: Feature extraction of objects using alexnet and optical flow without 3d image reconstruction,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, May 2020, pp. 3680–3685.
- W. Kim, W. D. Kim, J.-J. Kim, C.-H. Kim, and J. Kim, “Uvtac: Switchable uv marker-based tactile sensing finger for effective force estimation and object localization,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6036–6043, Jul. 2022.
- L. Van Duong and V. A. Ho, “Large-scale vision-based tactile sensing for robot links: Design, modeling, and evaluation,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 390–403, 2021.
- Q. K. Luu, N. H. Nguyen, and V. A. Ho, “Simulation, learning, and application of vision-based tactile sensing at large scale,” IEEE Transactions on Robotics, vol. PP, pp. 1–17, 2023.
- A. Breuss, C. Sferrazza, J. Pleisch, R. D’Andrea, and R. Riener, “Unobtrusive sleep position classification using a novel optical tactile sensor,” in 2023 45th Annual International Conference of the IEEE Engineering in Medicine &\&& Biology Society (EMBC), 2023, pp. 1–5.
- H. Bhatia, V. Pascucci, and P.-T. Bremer, “The natural helmholtz-hodge decomposition for open-boundary flow analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, pp. 1566–1578, 2014.
- T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using dense inverse search,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer, 2016, pp. 471–488.
- Q. Guo, M. K. Mandal, and M. Y. Li, “Efficient hodge–helmholtz decomposition of motion fields,” Pattern Recognition Letters, vol. 26, no. 4, pp. 493–501, Mar. 2005.
- C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground truth force distribution for learning-based tactile sensing: A finite element approach,” IEEE Access, vol. 7, pp. 173 438–173 449, 2019.
- C. Sferrazza and R. D’Andrea, “Sim-to-real for high-resolution optical tactile sensing: From images to three-dimensional contact force distributions,” Soft Robotics, vol. 9, no. 5, pp. 926–937, 2022.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.