Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Transfer Learning with Adversarial Robustness for Classification of High-Resolution Image Datasets (2401.17009v1)

Published 30 Jan 2024 in quant-ph

Abstract: The application of quantum machine learning to large-scale high-resolution image datasets is not yet possible due to the limited number of qubits and relatively high level of noise in the current generation of quantum devices. In this work, we address this challenge by proposing a quantum transfer learning (QTL) architecture that integrates quantum variational circuits with a classical machine learning network pre-trained on ImageNet dataset. Through a systematic set of simulations over a variety of image datasets such as Ants & Bees, CIFAR-10, and Road Sign Detection, we demonstrate the superior performance of our QTL approach over classical and quantum machine learning without involving transfer learning. Furthermore, we evaluate the adversarial robustness of QTL architecture with and without adversarial training, confirming that our QTL method is adversarially robust against data manipulation attacks and outperforms classical methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: