Unipotent nearby cycles and nearby cycles over general bases
Abstract: We show that under some conditions, two constructions of nearby cycles over general bases coincide. More specifically, we show that under the assumption of $\Psi$-factorizability, the constructions of unipotent nearby cycles over an affine space can be described using the theory of nearby cycles over general bases via the vanishing topos. In particular, this applies to nearby cycles of Satake sheaves on Beilinson-Drinfeld Grassmannians with parahoric ramification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.