Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Turbulent Threshold for Continuum Calogero-Moser Models (2401.16609v1)

Published 29 Jan 2024 in math.AP, math-ph, and math.MP

Abstract: We determine the sharp mass threshold for Sobolev norm growth for the focusing continuum Calogero--Moser model. It is known that below the mass of $2\pi$, solutions to this completely integrable model enjoy uniform-in-time $Hs$ bounds for all $s \geq 0$. In contrast, we show that for arbitrarily small $\varepsilon > 0$ there exists initial data $u_0 \in H\infty_+$ of mass $2\pi + \varepsilon$ such that the corresponding maximal lifespan solution $u : (T_-, T_+) \times \mathbb{R} \to \mathbb{C}$ satisfies $\lim_{t \to T_\pm} |u(t)|_{Hs} = \infty$ for all $s > 0$. As part of our proof, we demonstrate an orbital stability statement for the soliton and a dispersive decay bound for solutions with suitable initial data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Integrable hydrodynamics of Calogero–Sutherland model: bidirectional Benjamin–Ono equation. J. Phys. A, 42(13):135201, 24, 2009.
  2. R. Badreddine. On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation. Preprint arXiv:2303.01087.
  3. R. Badreddine. Traveling waves & finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation. Preprint arXiv:2307.01592.
  4. F. Calogero. Solution of the one-dimensional N𝑁Nitalic_N-body problems with quadratic and/or inversely quadratic pair potentials. J. Mathematical Phys., 12:419–436, 1971.
  5. F. Calogero and C. Marchioro. Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials. J. Mathematical Phys., 15:1425–1430, 1974.
  6. T. Cazenave and P.-L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., 85(4):549–561, 1982.
  7. R. P. de Moura and D. Pilod. Local well posedness for the nonlocal nonlinear Schrödinger equation below the energy space. Adv. Differential Equations, 15(9-10):925–952, 2010.
  8. P. Gérard. An explicit formula for the Benjamin–Ono equation. Tunis. J. Math., 5(3):593–603, 2023.
  9. P. Gérard and S. Grellier. An explicit formula for the cubic Szegő equation. Trans. Amer. Math. Soc., 367(4):2979–2995, 2015.
  10. P. Gérard and E. Lenzmann. The Calogero–Moser derivative nonlinear Schrödinger equation. Preprint arXiv:2208.04105.
  11. P. Gérard and A. Pushnitski. The cubic Szegő equation on the real line: explicit formula and well-posedness on the Hardy class. Preprint arXiv:2307.06734.
  12. Scaling-critical well-posedness for continuum Calogero–Moser models. Preprint arXiv:2311.12334.
  13. Y. Martel and F. Merle. Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal., 11(1):74–123, 2001.
  14. Y. Martel and F. Merle. Blow up in finite time and dynamics of blow up solutions for the L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-critical generalized KdV equation. J. Amer. Math. Soc., 15(3):617–664, 2002.
  15. J. Moser. Three integrable Hamiltonian systems connected with isospectral deformations. In Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), pages 235–258. Academic Press, New York-London, 1976.
  16. D. Pelinovsky. Intermediate nonlinear Schrödinger equation for internal waves in a fluid of finite depth. Physics Letters A, 197(5-6):401–406, 1995.
  17. Ruoci Sun. The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type. Preprint HAL:04227081.
  18. B. Sutherland. Exact results for a quantum many-body problem in one dimension. Physical Review A, 4(5):2019, 1971.
  19. B. Sutherland. Exact results for a quantum many-body problem in one dimension. II. Physical Review A, 5(3):1372, 1972.
  20. M. I. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16(3):472–491, 1985.
  21. M. I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39(1):51–67, 1986.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: