Turbulent Threshold for Continuum Calogero-Moser Models (2401.16609v1)
Abstract: We determine the sharp mass threshold for Sobolev norm growth for the focusing continuum Calogero--Moser model. It is known that below the mass of $2\pi$, solutions to this completely integrable model enjoy uniform-in-time $Hs$ bounds for all $s \geq 0$. In contrast, we show that for arbitrarily small $\varepsilon > 0$ there exists initial data $u_0 \in H\infty_+$ of mass $2\pi + \varepsilon$ such that the corresponding maximal lifespan solution $u : (T_-, T_+) \times \mathbb{R} \to \mathbb{C}$ satisfies $\lim_{t \to T_\pm} |u(t)|_{Hs} = \infty$ for all $s > 0$. As part of our proof, we demonstrate an orbital stability statement for the soliton and a dispersive decay bound for solutions with suitable initial data.
- Integrable hydrodynamics of Calogero–Sutherland model: bidirectional Benjamin–Ono equation. J. Phys. A, 42(13):135201, 24, 2009.
- R. Badreddine. On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation. Preprint arXiv:2303.01087.
- R. Badreddine. Traveling waves & finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation. Preprint arXiv:2307.01592.
- F. Calogero. Solution of the one-dimensional N𝑁Nitalic_N-body problems with quadratic and/or inversely quadratic pair potentials. J. Mathematical Phys., 12:419–436, 1971.
- F. Calogero and C. Marchioro. Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials. J. Mathematical Phys., 15:1425–1430, 1974.
- T. Cazenave and P.-L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., 85(4):549–561, 1982.
- R. P. de Moura and D. Pilod. Local well posedness for the nonlocal nonlinear Schrödinger equation below the energy space. Adv. Differential Equations, 15(9-10):925–952, 2010.
- P. Gérard. An explicit formula for the Benjamin–Ono equation. Tunis. J. Math., 5(3):593–603, 2023.
- P. Gérard and S. Grellier. An explicit formula for the cubic Szegő equation. Trans. Amer. Math. Soc., 367(4):2979–2995, 2015.
- P. Gérard and E. Lenzmann. The Calogero–Moser derivative nonlinear Schrödinger equation. Preprint arXiv:2208.04105.
- P. Gérard and A. Pushnitski. The cubic Szegő equation on the real line: explicit formula and well-posedness on the Hardy class. Preprint arXiv:2307.06734.
- Scaling-critical well-posedness for continuum Calogero–Moser models. Preprint arXiv:2311.12334.
- Y. Martel and F. Merle. Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal., 11(1):74–123, 2001.
- Y. Martel and F. Merle. Blow up in finite time and dynamics of blow up solutions for the L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-critical generalized KdV equation. J. Amer. Math. Soc., 15(3):617–664, 2002.
- J. Moser. Three integrable Hamiltonian systems connected with isospectral deformations. In Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), pages 235–258. Academic Press, New York-London, 1976.
- D. Pelinovsky. Intermediate nonlinear Schrödinger equation for internal waves in a fluid of finite depth. Physics Letters A, 197(5-6):401–406, 1995.
- Ruoci Sun. The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type. Preprint HAL:04227081.
- B. Sutherland. Exact results for a quantum many-body problem in one dimension. Physical Review A, 4(5):2019, 1971.
- B. Sutherland. Exact results for a quantum many-body problem in one dimension. II. Physical Review A, 5(3):1372, 1972.
- M. I. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal., 16(3):472–491, 1985.
- M. I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39(1):51–67, 1986.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.