Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Human-like Locomotion Based on Biological Actuation and Rewards (2401.15664v1)

Published 28 Jan 2024 in cs.GR

Abstract: We propose a method of learning a policy for human-like locomotion via deep reinforcement learning based on a human anatomical model, muscle actuation, and biologically inspired rewards, without any inherent control rules or reference motions. Our main ideas involve providing a dense reward using metabolic energy consumption at every step during the initial stages of learning and then transitioning to a sparse reward as learning progresses, and adjusting the initial posture of the human model to facilitate the exploration of locomotion. Additionally, we compared and analyzed differences in learning outcomes across various settings other than the proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube