Papers
Topics
Authors
Recent
2000 character limit reached

Learning natural locomotion behaviors for humanoid robots using human knowledge

Published 20 May 2020 in cs.RO | (2005.10195v2)

Abstract: This paper presents a new learning framework that leverages the knowledge from imitation learning, deep reinforcement learning, and control theories to achieve human-style locomotion that is natural, dynamic, and robust for humanoids. We proposed novel approaches to introduce human bias, i.e. motion capture data and a special Multi-Expert network structure. We used the Multi-Expert network structure to smoothly blend behavioral features, and used the augmented reward design for the task and imitation rewards. Our reward design is composable, tunable, and explainable by using fundamental concepts from conventional humanoid control. We rigorously validated and benchmarked the learning framework which consistently produced robust locomotion behaviors in various test scenarios. Further, we demonstrated the capability of learning robust and versatile policies in the presence of disturbances, such as terrain irregularities and external pushes.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.