Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coloured invariants of torus knots, $\mathcal{W}$ algebras, and relative asymptotic weight multiplicities (2401.15230v2)

Published 26 Jan 2024 in math.QA, math-ph, math.GT, math.MP, and math.RT

Abstract: We study coloured invariants of torus knots $T(p,p')$ (where $p,p'$ are coprime positive integers). When the colouring Lie algebra is simply-laced, and when $p,p'\geq h\vee$, we use the representation theory of the corresponding principal affine $\mathcal{W}$ algebras to understand the trailing monomials of the coloured invariants. In these cases, we show that the appropriate limits of the renormalized invariants are equal to the characters of certain $\mathcal{W}$ algebra modules (up to some factors). This result on limits rests on a purely Lie-algebraic conjecture on asymptotic weight multiplicities which we verify in some examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. G. E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
  2. T. Arakawa. Vanishing of cohomology associated to quantized Drinfeld-Sokolov reduction. Int. Math. Res. Not., (15):730–767, 2004.
  3. T. Arakawa. Representation theory of 𝒲𝒲\mathscr{W}script_W-algebras. Invent. Math., 169(2):219–320, 2007.
  4. T. Arakawa. Two-sided BGG resolutions of admissible representations. Represent. Theory, 18:183–222, 2014.
  5. T. Arakawa. Associated varieties of modules over Kac-Moody algebras and C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-cofiniteness of W𝑊Witalic_W-algebras. Int. Math. Res. Not. IMRN, (22):11605–11666, 2015.
  6. T. Arakawa. Rationality of W𝑊Witalic_W-algebras: principal nilpotent cases. Ann. of Math. (2), 182(2):565–604, 2015.
  7. C. Armond and O. T. Dasbach. Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial. arXiv:1106.3948 [math.GT].
  8. A vector partition function for the multiplicities of 𝔰⁢𝔩k⁢ℂ𝔰subscript𝔩𝑘ℂ\mathfrak{sl}_{k}\mathbb{C}fraktur_s fraktur_l start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT blackboard_C. J. Algebra, 278(1):251–293, 2004.
  9. Higher depth false modular forms. Commun. Contemp. Math., 25(7):Paper No. 2250043, 53, 2023.
  10. M. Brion and M. Vergne. Residue formulae, vector partition functions and lattice points in rational polytopes. J. Amer. Math. Soc., 10(4):797–833, 1997.
  11. Sphere packings, lattices and groups, volume 290 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.
  12. Characters and fusion rules for W𝑊Witalic_W-algebras via quantized Drinfel’d-Sokolov reduction. Comm. Math. Phys., 147(2):295–328, 1992.
  13. W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
  14. S. Garoufalidis and T. T. Q. Lê. Nahm sums, stability and the colored Jones polynomial. Res. Math. Sci., 2:Art. 1, 55, 2015.
  15. The SL3subscriptSL3\mathrm{SL}_{3}roman_SL start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT colored Jones polynomial of the trefoil. Proc. Amer. Math. Soc., 141(6):2209–2220, 2013.
  16. S. Garoufalidis and T. Vuong. A stability conjecture for the colored Jones polynomial. Topology Proc., 49:211–249, 2017.
  17. K. Hikami and S. Sugimoto. Torus links T2⁢s,2⁢tsubscript𝑇2𝑠2𝑡T_{2s,2t}italic_T start_POSTSUBSCRIPT 2 italic_s , 2 italic_t end_POSTSUBSCRIPT and (s,t)𝑠𝑡(s,t)( italic_s , italic_t )-log VOA, to appear.
  18. J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1978. Second printing, revised.
  19. V. G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.
  20. V. G. Kac and M. Wakimoto. Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. U.S.A., 85(14):4956–4960, 1988.
  21. V. G. Kac and M. Wakimoto. On rationality of W𝑊Witalic_W-algebras. Transform. Groups, 13(3-4):671–713, 2008.
  22. S. Kanade. Characters of logarithmic vertex operator algebras and coloured invariants of torus links. arXiv:2305.17543 [math.QA].
  23. S. Kanade. Coloured 𝔰⁢𝔩r𝔰subscript𝔩𝑟\mathfrak{sl}_{r}fraktur_s fraktur_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT invariants of torus knots and characters of 𝒲rsubscript𝒲𝑟{\mathcal{W}}_{r}caligraphic_W start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT algebras. Lett. Math. Phys., 113(1):Paper No. 5, 21, 2023.
  24. S. Kanade and A. Ayyer. In progress.
  25. H. R. Morton. The coloured Jones function and Alexander polynomial for torus knots. Math. Proc. Cambridge Philos. Soc., 117(1):129–135, 1995.
  26. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
  27. M. Rosso and V. Jones. On the invariants of torus knots derived from quantum groups. J. Knot Theory Ramifications, 2(1):97–112, 1993.
  28. B. Sturmfels. On vector partition functions. J. Combin. Theory Ser. A, 72(2):302–309, 1995.
  29. J. Tarski. Partition function for certain simple Lie algebras. J. Mathematical Phys., 4:569–574, 1963.
  30. M. Wakimoto. Lectures on infinite-dimensional Lie algebra. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  31. W. Yuasa. The zero stability for the one-row colored 𝔰⁢𝔩3𝔰subscript𝔩3\mathfrak{sl}_{3}fraktur_s fraktur_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Jones polynomial. arXiv:2007.15621 [math.GT].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: